1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// Hound -- A wav encoding and decoding library in Rust
// Copyright (C) 2015 Ruud van Asseldonk
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// A copy of the License has been included in the root of the repository.
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Hound, a wav encoding and decoding library.
//!
//! Examples
//! ========
//!
//! The following example renders a 440 Hz sine wave, and stores it as as a
//! mono wav file with a sample rate of 44.1 kHz and 16 bits per sample.
//!
//! ```
//! use std::f32::consts::PI;
//! use std::i16;
//! use hound;
//!
//! let spec = hound::WavSpec {
//!     channels: 1,
//!     sample_rate: 44100,
//!     bits_per_sample: 16
//! };
//! let mut writer = hound::WavWriter::create("sine.wav", spec).unwrap();
//! for t in (0 .. 44100).map(|x| x as f32 / 44100.0) {
//!     let sample = (t * 440.0 * 2.0 * PI).sin();
//!     let amplitude = i16::MAX as f32;
//!     writer.write_sample((sample * amplitude) as i16).unwrap();
//! }
//! writer.finalize().unwrap();
//! ```
//!
//! The following example computes the root mean square (RMS) of an audio file
//! with at most 16 bits per sample.
//!
//! ```
//! use hound;
//!
//! let mut reader = hound::WavReader::open("testsamples/pop.wav").unwrap();
//! let sqr_sum = reader.samples::<i16>()
//!                     .fold(0.0, |sqr_sum, s| {
//!     let sample = s.unwrap() as f64;
//!     sqr_sum + sample * sample
//! });
//! println!("RMS is {}", (sqr_sum / reader.len() as f64).sqrt());
//! ```

#![warn(missing_docs)]

use std::error;
use std::fmt;
use std::io;
use std::io::Write;
use std::result;
use read::ReadExt;
use write::WriteExt;

mod read;
mod write;

pub use read::{WavReader, WavIntoSamples, WavSamples};
pub use write::WavWriter;

/// A type that can be used to represent audio samples.
///
/// Via this trait, decoding can be generic over `i8`, `i16` and `i32`. All bit
/// depths up to 32 bits per sample can be decoded into `i32`, but it takes up
/// more memory. If you know beforehand that you will be reading a file with
/// 16 bits per sample, then decoding into an `i16` will be sufficient.
pub trait Sample: Sized {
    /// Writes the audio sample to the WAVE data chunk.
    fn write<W: io::Write>(self, writer: &mut W, bits: u16) -> Result<()>;

    /// Reads the audio sample from the WAVE data chunk.
    fn read<R: io::Read>(reader: &mut R, bytes: u16, bits: u16) -> Result<Self>;
}

/// Converts an unsigned integer in the range 0-255 to a signed one in the range -128-127.
///
/// Presumably, the designers of the WAVE format did not like consistency. For
/// all bit depths except 8, samples are stored as little-endian _signed_
/// integers. However, an 8-bit sample is instead stored as an _unsigned_
/// integer. Hound abstracts away this idiosyncrasy by providing only signed
/// sample types.
fn signed_from_u8(x: u8) -> i8 {
    (x as i16 - 128) as i8
}

/// Converts a signed integer in the range -128-127 to an unsigned one in the range 0-255.
fn u8_from_signed(x: i8) -> u8 {
    (x as i16 + 128) as u8
}

#[test]
fn u8_sign_conversion_is_bijective() {
    for x in (0 .. 255) {
        assert_eq!(x, u8_from_signed(signed_from_u8(x)));
    }
    for x in (-128 .. 127) {
        assert_eq!(x, signed_from_u8(u8_from_signed(x)));
    }
}

/// Tries to cast the sample to an 8-bit signed integer, returning an error on overflow.
fn narrow_to_i8(x: i32) -> Result<i8> {
    use std::i8;
    if x < i8::MIN as i32 || x > i8::MAX as i32 {
        Err(Error::TooWide)
    } else {
        Ok(x as i8)
    }
}

#[test]
fn verify_narrow_to_i8() {
    assert!(narrow_to_i8(127).is_ok());
    assert!(narrow_to_i8(128).is_err());
    assert!(narrow_to_i8(-128).is_ok());
    assert!(narrow_to_i8(-129).is_err());
}

/// Tries to cast the sample to a 16-bit signed integer, returning an error on overflow.
fn narrow_to_i16(x: i32) -> Result<i16> {
    use std::i16;
    if x < i16::MIN as i32 || x > i16::MAX as i32 {
        Err(Error::TooWide)
    } else {
        Ok(x as i16)
    }
}

#[test]
fn verify_narrow_to_i16() {
    assert!(narrow_to_i16(32767).is_ok());
    assert!(narrow_to_i16(32768).is_err());
    assert!(narrow_to_i16(-32768).is_ok());
    assert!(narrow_to_i16(-32769).is_err());
}

/// Tries to cast the sample to a 24-bit signed integer, returning an error on overflow.
fn narrow_to_i24(x: i32) -> Result<i32> {
    if x < -(1 << 23) || x > (1 << 23) - 1 {
        Err(Error::TooWide)
    } else {
        Ok(x)
    }
}

#[test]
fn verify_narrow_to_i24() {
    assert!(narrow_to_i24(8_388_607).is_ok());
    assert!(narrow_to_i24(8_388_608).is_err());
    assert!(narrow_to_i24(-8_388_608).is_ok());
    assert!(narrow_to_i24(-8_388_609).is_err());
}

impl Sample for i8 {
    fn write<W: io::Write>(self, writer: &mut W, bits: u16) -> Result<()> {
        match bits {
            8 => Ok(try!(writer.write_u8(u8_from_signed(self)))),
            16 => Ok(try!(writer.write_le_i16(self as i16))),
            24 => Ok(try!(writer.write_le_i24(self as i32))),
            32 => Ok(try!(writer.write_le_i32(self as i32))),
            _ => Err(Error::Unsupported)
        }
    }

    fn read<R: io::Read>(reader: &mut R, bytes: u16, bits: u16) -> Result<i8> {
        match (bytes, bits) {
            (1, 8) => Ok(try!(reader.read_u8().map(signed_from_u8))),
            (n, _) if n > 1 => Err(Error::TooWide),
            // TODO: add a genric decoder for any bit depth.
            _ => Err(Error::Unsupported)
        }
    }
}

impl Sample for i16 {
    fn write<W: io::Write>(self, writer: &mut W, bits: u16) -> Result<()> {
        match bits {
            8 => Ok(try!(writer.write_u8(u8_from_signed(try!(narrow_to_i8(self as i32)))))),
            16 => Ok(try!(writer.write_le_i16(self))),
            24 => Ok(try!(writer.write_le_i24(self as i32))),
            32 => Ok(try!(writer.write_le_i32(self as i32))),
            _ => Err(Error::Unsupported)
        }
    }

    fn read<R: io::Read>(reader: &mut R, bytes: u16, bits: u16) -> Result<i16> {
        match (bytes, bits) {
            (1, 8) => Ok(try!(reader.read_u8().map(signed_from_u8).map(|x| x as i16))),
            (2, 16) => Ok(try!(reader.read_le_i16())),
            (n, _) if n > 2 => Err(Error::TooWide),
            // TODO: add a generic decoder for any bit depth.
            _ => Err(Error::Unsupported)
        }
    }
}

impl Sample for i32 {
    fn write<W: io::Write>(self, writer: &mut W, bits: u16) -> Result<()> {
        match bits {
            8 => Ok(try!(writer.write_u8(u8_from_signed(try!(narrow_to_i8(self)))))),
            16 => Ok(try!(writer.write_le_i16(try!(narrow_to_i16(self))))),
            24 => Ok(try!(writer.write_le_i24(try!(narrow_to_i24(self))))),
            32 => Ok(try!(writer.write_le_i32(self))),
            _ => Err(Error::Unsupported)
        }
    }

    fn read<R: io::Read>(reader: &mut R, bytes: u16, bits: u16) -> Result<i32> {
        match (bytes, bits) {
            (1, 8) => Ok(try!(reader.read_u8().map(signed_from_u8).map(|x| x as i32))),
            (2, 16) => Ok(try!(reader.read_le_i16().map(|x| x as i32))),
            (3, 24) => Ok(try!(reader.read_le_i24())),
            (4, 32) => Ok(try!(reader.read_le_i32())),
            (n, _) if n > 4 => Err(Error::TooWide),
            // TODO: add a generic decoder for any bit depth.
            _ => Err(Error::Unsupported)
        }
    }
}

/// Specifies properties of the audio data.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct WavSpec {
    /// The number of channels.
    pub channels: u16,

    /// The number of samples per second.
    ///
    /// A common value is 44100, this is 44.1 kHz which is used for CD audio.
    pub sample_rate: u32,

    /// The number of bits per sample.
    ///
    /// A common value is 16 bits per sample, which is used for CD audio.
    pub bits_per_sample: u16
}

/// The error type for operations on `WavReader` and `WavWriter`.
#[derive(Debug)]
pub enum Error {
    /// An IO error occured in the underlying reader or writer.
    IoError(io::Error),
    /// Ill-formed WAVE data was encountered.
    FormatError(&'static str),
    /// The sample has more bits than the destination type.
    ///
    /// When iterating using the `samples` iterator, this means that the
    /// destination type (produced by the iterator) is not wide enough to hold
    /// the sample. When writing, this means that the sample cannot be written,
    /// because it requires more bits than the bits per sample specified.
    TooWide,
    /// The number of samples written is not a multiple of the number of channels.
    UnfinishedSample,
    /// The format is not supported.
    Unsupported
}

impl fmt::Display for Error {
    fn fmt(&self, formatter: &mut fmt::Formatter)
           -> result::Result<(), fmt::Error> {
        match *self {
            Error::IoError(ref err) => err.fmt(formatter),
            Error::FormatError(reason) => {
                try!(formatter.write_str("Ill-formed WAVE file: "));
                formatter.write_str(reason)
            },
            Error::TooWide => {
                formatter.write_str("The sample has more bits than the destination type.")
            },
            Error::UnfinishedSample => {
                formatter.write_str("The number of samples written is not a multiple of the number of channels.")
            },
            Error::Unsupported => {
                formatter.write_str("The wave format of the file is not supported.")
            }
        }
    }
}

impl error::Error for Error {
    fn description(&self) -> &str {
        match *self {
            Error::IoError(ref err) => err.description(),
            Error::FormatError(reason) => reason,
            Error::TooWide => "the sample has more bits than the destination type",
            Error::UnfinishedSample => "the number of samples written is not a multiple of the number of channels",
            Error::Unsupported => "the wave format of the file is not supported"
        }
    }

    fn cause(&self) -> Option<&error::Error> {
        match *self {
            Error::IoError(ref err) => Some(err),
            Error::FormatError(_) => None,
            Error::TooWide => None,
            Error::UnfinishedSample => None,
            Error::Unsupported => None
        }
    }
}

impl From<io::Error> for Error {
    fn from(err: io::Error) -> Error {
        Error::IoError(err)
    }
}

/// A type for results generated by Hound where the error type is hard-wired.
pub type Result<T> = result::Result<T, Error>;

// The WAVEFORMATEXTENSIBLE struct can contain several subformats.
// These are identified by a GUID. The various GUIDS can be found in the file
// mmreg.h that is part of the Windows SDK. The following GUIDS are defined:
// - PCM:        00000001-0000-0010-8000-00aa00389b71
// - IEEE_FLOAT: 00000003-0000-0010-8000-00aa00389b71
// When written to a wav file, the byte order of a GUID is native for the first
// three sections, which is assumed to be little endian, and big endian for the
// last 8-byte section (which does contain a hyphen, for reasons unknown to me).

/// Subformat type for PCM audio with integer samples.
const KSDATAFORMAT_SUBTYPE_PCM: [u8; 16] = [0x01, 0x00, 0x00, 0x00,
                                            0x00, 0x00, 0x10, 0x00,
                                            0x80, 0x00, 0x00, 0xaa,
                                            0x00, 0x38, 0x9b, 0x71];

#[test]
fn write_read_i16_is_lossless() {
    let mut buffer = io::Cursor::new(Vec::new());
    let write_spec = WavSpec {
        channels: 2,
        sample_rate: 44100,
        bits_per_sample: 16
    };

    {
        let mut writer = WavWriter::new(&mut buffer, write_spec);
        for s in (-1024_i16 .. 1024) {
            writer.write_sample(s).unwrap();
        }
        writer.finalize().unwrap();
    }

    {
        buffer.set_position(0);
        let mut reader = WavReader::new(&mut buffer).unwrap();
        assert_eq!(write_spec, reader.spec());
        for (expected, read) in (-1024_i16 .. 1024).zip(reader.samples()) {
            assert_eq!(expected, read.unwrap());
        }
    }
}

#[test]
fn write_read_i8_is_lossless() {
    let mut buffer = io::Cursor::new(Vec::new());
    let write_spec = WavSpec {
        channels: 16,
        sample_rate: 48000,
        bits_per_sample: 8
    };

    // Write `i8` samples.
    {
        let mut writer = WavWriter::new(&mut buffer, write_spec);
        // Iterate over i16 because we cannot specify the upper bound otherwise.
        for s in (-128_i16 .. 127 + 1) {
            writer.write_sample(s as i8).unwrap();
        }
        writer.finalize().unwrap();
    }

    // Then read them into `i16`.
    {
        buffer.set_position(0);
        let mut reader = WavReader::new(&mut buffer).unwrap();
        assert_eq!(write_spec, reader.spec());
        for (expected, read) in (-128_i16 .. 127 + 1).zip(reader.samples()) {
            assert_eq!(expected, read.unwrap());
        }
    }
}

#[test]
fn write_read_i24_is_lossless() {
    let mut buffer = io::Cursor::new(Vec::new());
    let write_spec = WavSpec {
        channels: 16,
        sample_rate: 96000,
        bits_per_sample: 24
    };

    // Write `i32` samples, but with at most 24 bits per sample.
    {
        let mut writer = WavWriter::new(&mut buffer, write_spec);
        for s in (-128_i32 .. 127 + 1) {
            writer.write_sample(s * 256 * 256).unwrap();
        }
        writer.finalize().unwrap();
    }

    // Then read them into `i32`. This should extend the sign in the correct
    // manner.
    {
        buffer.set_position(0);
        let mut reader = WavReader::new(&mut buffer).unwrap();
        assert_eq!(write_spec, reader.spec());
        for (expected, read) in (-128_i32 .. 127 + 1).map(|x| x * 256 * 256)
                                                     .zip(reader.samples()) {
            assert_eq!(expected, read.unwrap());
        }
    }
}