1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/// This module contains the Parser and Error types which
/// contain the minimal logic for implementing the atomic
/// parser combinators.

/// Required modules and traits from core
use core::fmt;
use core::ops::Bound::*;
use core::ops::{BitAnd, BitOr, BitXor, Mul, Not, RangeBounds, Rem, Shl, Shr, Sub};

use alloc::string::{String, ToString};
use alloc::sync::Arc;
/// We need alloc!
use alloc::vec::Vec;

/// This struct is the Err result when parsing.
/// It contains a string representing:
/// The actual input received
/// The expected input
/// And the remaining, unparsed input
#[derive(Clone, PartialEq)]
pub struct Error {
    actual: String,
    expected: String,
    remaining_input: String,
}

impl Error {
    pub fn new<T>(
        actual: impl ToString,
        expected: impl ToString,
        remaining_input: impl ToString,
    ) -> Result<T, Self> {
        Err(Self {
            actual: actual.to_string(),
            expected: expected.to_string(),
            remaining_input: remaining_input.to_string(),
        })
    }
}

/// Needed for assertions and general debugging
impl fmt::Debug for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(
            f,
            "Expected `{}` but found `{}` when parsing `{}`",
            self.expected,
            self.actual,
            self.remaining_input.replace("\n", "")
        )
    }
}

/// The Output type represents the output of a parser.
/// Ok(T, String) result represents successfully parsed & lexed input.
/// The T type represents the consumed and lexed input,
/// and the String represents the remaining input.
pub type Output<T> = Result<(T, String), Error>;

/// A Parser has a function that consumes input
/// and returns an object of type Output.
#[derive(Clone)]
pub struct Parser<T> {
    parser: Arc<dyn Fn(&str) -> Output<T>>,
    pub expectation: String,
}

impl<T> Parser<T>
where
    T: 'static + Clone,
{
    /// Create a new parser from a function that returns an Output.
    /// This is mainly used to define the atomic combinators
    pub fn new(parser: impl Fn(&str) -> Output<T> + 'static, expectation: impl ToString) -> Self {
        Self {
            parser: Arc::new(parser),
            expectation: expectation.to_string(),
        }
    }

    pub fn expects(mut self, expectation: impl ToString) -> Self {
        self.expectation = expectation.to_string();
        self
    }

    /// This parses a string using this combinator, and returns
    /// a result containing either the successfully lexed and parsed
    /// data, or an error containing info about the failure.
    pub fn parse(&self, input: &str) -> Result<T, Error> {
        match self.parse_internal(input) {
            Ok(t) => Ok(t.0),
            Err(e) => Error::new(e.actual, self.expectation.clone(), e.remaining_input),
        }
    }

    /// This is used by the atomic combinators for things like
    /// control flow and passing the output of one parser into another.
    pub fn parse_internal(&self, input: &str) -> Output<T> {
        (self.parser)(input)
    }

    /// This method takes a function that takes the output of this Parser,
    /// and converts it to the output of another data type.
    /// This allows us to lex our input as we parse it.
    pub fn map<O>(self, map_fn: fn(T) -> O) -> Parser<O>
    where
        O: 'static + Clone,
    {
        let expect = self.expectation.clone();
        Parser::new(
            move |s: &str| match self.parse_internal(s) {
                Ok((first_out, input)) => Ok((map_fn(first_out), input)),
                Err(e) => Err(e),
            },
            expect,
        )
    }

    /// This method takes a function that takes the output of this Parser,
    /// and TRIES to convert it to the output of another data type.
    /// If the given function returns an Err, this parser fails.
    pub fn convert<O, E>(self, convert_fn: fn(T) -> Result<O, E>) -> Parser<O>
    where
        O: 'static + Clone,
        E: 'static,
    {
        let expect = self.expectation.clone();
        Parser::new(
            move |s: &str| match self.parse_internal(s) {
                Ok((first_out, input)) => {
                    let result = match convert_fn(first_out) {
                        Ok(value) => value,
                        Err(_) => return Error::new(s.clone(), "A convertible value", s.clone()),
                    };
                    Ok((result, input))
                }
                Err(e) => Err(e),
            },
            expect,
        )
    }

    /// This parser "prefixes" another.
    /// When the returned parser is used, it will require this parser and
    /// the operand parser to succeed, and return the result of the second.
    pub fn prefixes<O>(self, operand: Parser<O>) -> Parser<O>
    where
        O: 'static + Clone,
    {
        let expect = self.expectation.clone() + " followed by " + &operand.expectation.clone();
        Parser::new(
            move |s: &str| {
                // Get the remaining input from ourselves
                // and discard consumed input
                let (_, remaining) = self.parse_internal(s)?;
                // Get the consumed input and remaining input from operand
                let (consumed, remaining) = operand.parse_internal(&remaining)?;
                // Return result
                Ok((consumed, remaining))
            },
            expect,
        )
    }

    /// This parser will use the operand as a "suffix".
    /// The parser will only succeed if the "suffix" parser succeeds afterwards,
    /// but the input of the "suffix" parser will be discarded.
    pub fn suffix<O>(self, operand: Parser<O>) -> Parser<T>
    where
        O: 'static + Clone,
    {
        let expect = self.expectation.clone() + " followed by " + &operand.expectation.clone();
        Parser::new(
            move |s: &str| {
                // Get consumed input and remaining input from ourselves
                let (consumed, remaining) = self.parse_internal(s)?;
                // Consume the input from the remaining,
                // but discard the consumed result.
                let (_, remaining) = operand.parse_internal(&remaining)?;
                // Return result
                Ok((consumed, remaining))
            },
            expect,
        )
    }

    /// This method returns a parser that does not consume input,
    /// but succeeds if this parser succeeds. This can be used to
    /// make assertions for our input.
    pub fn is(self) -> Parser<()> {
        let expect = self.expectation.clone();
        Parser::new(
            move |s: &str| match self.parse_internal(s) {
                // If this parser succeeds, consume nothing and continue
                Ok(_) => Ok(((), s.to_string())),
                // If this parser fails, throw an error
                Err(_) => Error::new(s, format!("Not {}", s), s),
            },
            expect,
        )
    }

    /// This method returns a parser that does not consume input,
    /// but succeeds if this parser does not succeed. This can be
    /// used to make assertions for our input.
    pub fn isnt(self) -> Parser<()> {
        let expect = self.expectation.clone();
        Parser::new(
            move |s: &str| match self.parse_internal(s) {
                // If this parser succeeds, throw an error
                Ok(_) => Error::new(s, format!("Not {}", self.expectation), s),
                // If this parser fails, consume nothing and continue
                Err(_) => Ok(((), s.to_string())),
            },
            format!("Not {}", expect),
        )
    }

    /// Combine two parsers into one, and combine their consumed
    /// inputs into a tuple.
    /// Parser<A> & Parser<B> -> Parser<A, B>.
    /// The resulting parser will only succeed if BOTH sub-parsers succeed.
    pub fn and<O>(self, operand: Parser<O>) -> Parser<(T, O)>
    where
        O: 'static + Clone,
    {
        let expect = self.expectation.clone() + " and " + &operand.expectation.clone();
        Parser::new(
            move |s: &str| {
                // Get the first consumed and remaining
                let (first_consumed, remaining) = self.parse_internal(s)?;
                // Get the second consumed and remaining
                let (second_consumed, remaining) = operand.parse_internal(&remaining)?;
                // Return a tuple of first and second
                Ok(((first_consumed, second_consumed), remaining))
            },
            expect,
        )
    }

    /// If this parser does not succeed, try this other parser
    pub fn or(self, operand: Self) -> Self {
        let expect = self.expectation.clone() + " or " + &operand.expectation.clone();
        Parser::new(
            move |s: &str| match self.parse_internal(s) {
                // If we succeed, return OUR result
                Ok(t) => Ok(t),
                // If we don't succeed, return the other parser's result
                // We can safely discard OUR error here because we expect failure.
                Err(_) => operand.parse_internal(s),
            },
            expect,
        )
    }

    /// Repeat this parser N..M times
    /// This can also be repeated ..N times, N.. times, or even .. times
    pub fn repeat(self, range: impl RangeBounds<usize>) -> Parser<Vec<T>> {
        // Get the upper bound
        let upper_bound: usize = match range.end_bound() {
            Unbounded => core::usize::MAX,
            Excluded(n) => *n,
            Included(n) => *n,
        };

        // Get the lower bound
        let lower_bound: usize = match range.start_bound() {
            Unbounded => 0,
            Excluded(n) => *n,
            Included(n) => *n,
        };

        let expect = self.expectation.clone()
            + &format!(" {:?}..{:?} times", range.start_bound(), range.end_bound());
        Parser::new(
            move |s: &str| {
                // The string containing the remaining input
                let mut remaining_input = s.to_string();
                // This accumulates all the consumed and lexed outputs
                // from all the successfully parsed inputs
                let mut accum = vec![];

                for n in 0..upper_bound {
                    match self.parse_internal(&remaining_input) {
                        Ok((consumed, unconsumed)) => {
                            accum.push(consumed);
                            remaining_input = unconsumed;
                        }
                        Err(e) => {
                            // If we did not consume enough data, we failed.
                            // If consumed greater than the lower bound, we succeeded!
                            if n < lower_bound {
                                return Err(e);
                            } else {
                                return Ok((accum, remaining_input));
                            }
                        }
                    }
                }
                // Return the vector of consumed inputs
                Ok((accum, remaining_input))
            },
            expect,
        )
    }
}

/// The | operator can be used as an alternative to the `.or` method
impl<T: 'static + Clone, S: ToString> Rem<S> for Parser<T> {
    type Output = Self;
    fn rem(self, rhs: S) -> Self::Output {
        self.expects(rhs)
    }
}

/// The | operator can be used as an alternative to the `.or` method
impl<T: 'static + Clone> BitOr for Parser<T> {
    type Output = Parser<T>;
    fn bitor(self, rhs: Self) -> Self::Output {
        self.or(rhs)
    }
}

/// The & operator can be used as an alternative to the `.and` method
impl<A: 'static + Clone, B: 'static + Clone> BitAnd<Parser<B>> for Parser<A> {
    type Output = Parser<(A, B)>;
    fn bitand(self, rhs: Parser<B>) -> Self::Output {
        self.and(rhs)
    }
}

/// The ! operator can be used as an alternative to the `.not` method
impl<T: 'static + Clone> Not for Parser<T> {
    type Output = Parser<()>;
    fn not(self) -> Self::Output {
        self.isnt()
    }
}

/// Discard the consumed data of the RHS
impl<A: 'static + Clone, B: 'static + Clone> Shl<Parser<B>> for Parser<A> {
    type Output = Parser<A>;
    fn shl(self, rhs: Parser<B>) -> Self::Output {
        self.suffix(rhs)
    }
}

/// Discard the consumed data of the LHS
impl<A: 'static + Clone, B: 'static + Clone> Shr<Parser<B>> for Parser<A> {
    type Output = Parser<B>;
    fn shr(self, rhs: Parser<B>) -> Self::Output {
        self.prefixes(rhs)
    }
}

/// A parser can be multiplied by a range as an alternative to `.repeat`.
/// Here's an example: `sym('a') * (..7)`
impl<T: 'static + Clone, R: RangeBounds<usize>> Mul<R> for Parser<T> {
    type Output = Parser<Vec<T>>;
    fn mul(self, rhs: R) -> Self::Output {
        self.repeat(rhs)
    }
}

/// The - operator is used as an alternative to the `.map` method.
impl<O, T> Sub<fn(T) -> O> for Parser<T>
where
    O: 'static + Clone,
    T: 'static + Clone,
{
    type Output = Parser<O>;
    fn sub(self, rhs: fn(T) -> O) -> Self::Output {
        self.map(rhs)
    }
}

/// The ^ operator is used as an alternative to the `.convert` method.
impl<O, T, E> BitXor<fn(T) -> Result<O, E>> for Parser<T>
where
    O: 'static + Clone,
    T: 'static + Clone,
    E: 'static,
{
    type Output = Parser<O>;
    fn bitxor(self, rhs: fn(T) -> Result<O, E>) -> Self::Output {
        self.convert(rhs)
    }
}