1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#[macro_use]
extern crate log;
extern crate libc;
extern crate log4rs;
extern crate rppal;

pub mod prelude;

use std::mem::MaybeUninit;
use std::{thread, time};

use libc::{sched_get_priority_max, sched_setscheduler};
use rppal::gpio::OutputPin;

use prelude::*;

pub unsafe fn scheduler_realtime() {
    info!("Switching to realtime scheduler...");

    let mut p: libc::sched_param;
    // Convince the Rust compiler that p is initialized.
    p = MaybeUninit::uninit().assume_init();

    p.sched_priority = sched_get_priority_max(libc::SCHED_RR);
    if sched_setscheduler(0, libc::SCHED_RR, &p) == -1 {
        // TODO: Add errno readout.
        warn!("Failed to switch to realtime scheduler.");
        eprintln!("Failed to switch to realtime scheduler.");
    }

    info!("Switched to realtime scheduler.");
}

pub unsafe fn scheduler_standard() {
    info!("Switching to standard scheduler...");

    let mut p: libc::sched_param;
    // Convince the Rust compiler that p is initialized.
    p = MaybeUninit::uninit().assume_init();

    p.sched_priority = sched_get_priority_max(libc::SCHED_OTHER);
    if sched_setscheduler(0, libc::SCHED_OTHER, &p) == -1 {
        // TODO: Add errno readout.
        warn!("Failed to switch to standard scheduler.");
        eprintln!("Failed to switch to standard scheduler.");
    }

    info!("Switched to standard scheduler.");
}

fn send_bit(pin: &mut OutputPin, bit: bool) {
    debug!("Sending bit: {}", bit);

    let small_delay = time::Duration::new(0, 275000);
    let large_delay = time::Duration::new(0, 1225000);

    if bit {
        pin.set_high();
        thread::sleep(small_delay);
        pin.set_low();
        thread::sleep(large_delay);
    } else {
        pin.set_high();
        thread::sleep(small_delay);
        pin.set_low();
        thread::sleep(small_delay);
    }
}

fn power2(power: usize) -> u32 {
    let mut integer: u32 = 1;
    for _ in 0..power {
        integer *= 2;
    }

    debug!("power2({}) -> {}", power, integer);

    integer
}

impl<'a> EncodedFrame<'a> {
    pub fn from_decoded<'b>(decoded: &DecodedFrame, pin: &'b mut OutputPin) -> EncodedFrame<'b> {
        let mut encoded = EncodedFrame {
            pin,
            sender: [false; 26],
            interruptor: [false; 4],
            state: match decoded.state.as_str() {
                "On" | "on" => true,
                "Off" | "off" => false,
                _ => panic!("Invalid input"),
            },
        };

        encoded.itob(decoded.sender);
        encoded.itob_interruptor(decoded.interruptor);

        info!("New EncodedFrame from DecodedFrame:");
        info!("\tpin: opened from {}", decoded.pin);
        info!("\tsender: {:?}", encoded.sender);
        info!("\tinterruptor: {:?}", encoded.interruptor);
        info!("\tstate: {}", encoded.state);

        encoded
    }

    fn itob(&mut self, mut integer: u32) {
        for i in 0..self.sender.len() {
            if (integer / power2(self.sender.len() - 1 - i)) == 1 {
                integer -= power2(self.sender.len() - 1 - i);
                self.sender[i] = true;
            } else {
                self.sender[i] = false;
            }
        }
    }

    fn itob_interruptor(&mut self, mut integer: u32) {
        for i in 0..self.interruptor.len() {
            if (integer / power2(self.interruptor.len() - 1 - i)) == 1 {
                integer -= power2(self.interruptor.len() - 1 - i);
                self.interruptor[i] = true;
            } else {
                self.interruptor[i] = false;
            }
        }
    }
}

fn send_pair(pin: &mut OutputPin, bit: bool) {
    debug!("Send pair for bit: {}", bit);

    if bit {
        send_bit(pin, true);
        send_bit(pin, false);
    } else {
        send_bit(pin, false);
        send_bit(pin, true);
    }
}

pub fn transmit(frame: &mut EncodedFrame) {
    let wait_delay = time::Duration::new(0, 275000);
    let second_lock_delay = time::Duration::new(0, 2675000);
    let first_lock_delay = time::Duration::new(0, 9900000);

    frame.pin.set_high();
    thread::sleep(wait_delay);
    frame.pin.set_low();
    thread::sleep(first_lock_delay);
    frame.pin.set_high();
    thread::sleep(wait_delay);
    frame.pin.set_low();
    thread::sleep(second_lock_delay);
    frame.pin.set_high();

    // Code from emitor (emitor ID)
    for b in frame.sender.iter() {
        send_pair(frame.pin, *b);
    }

    // 26th bit (grouped command)
    send_pair(frame.pin, false);

    // 27th bit (On or Off)
    send_pair(frame.pin, frame.state);

    // 4 last bits
    for b in frame.interruptor.iter() {
        send_pair(frame.pin, *b);
    }

    frame.pin.set_high();
    thread::sleep(wait_delay);
    frame.pin.set_low();
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    #[should_panic]
    fn it_cannot_switch_to_rt_scheduler() {
        unsafe { scheduler_realtime() };
    }

    #[test]
    #[should_panic]
    fn it_cannot_switch_to_standard_scheduler() {
        unsafe { scheduler_standard() };
    }
}