1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Holochain Zome Types: only the types needed by Holochain application
//! developers to use in their Zome code, and nothing more.
//!
//! This crate is intentionally kept as minimal as possible, since it is
//! typically included as a dependency in Holochain Zomes, which are
//! distributed as chunks of Wasm. In contrast, the
//! [holochain_types crate](https://crates.io/crates/holochain_types)
//! contains more types which are used by Holochain itself.

#![deny(missing_docs)]

#[allow(missing_docs)]
pub mod action;
#[allow(missing_docs)]
pub mod agent_activity;
pub mod bytes;
#[allow(missing_docs)]
pub mod call;
pub mod capability;
pub mod cell;
#[allow(missing_docs)]
pub mod chain;
pub mod countersigning;
#[allow(missing_docs)]
pub mod crdt;
pub mod dna_def;
pub mod entry;
#[allow(missing_docs)]
pub mod entry_def;
pub mod genesis;
#[allow(missing_docs)]
pub mod hash;
#[allow(missing_docs)]
pub mod info;
#[allow(missing_docs)]
pub mod init;
pub mod judged;
#[allow(missing_docs)]
pub mod link;
pub mod metadata;
#[allow(missing_docs)]
pub mod migrate_agent;
#[allow(missing_docs)]
pub mod op;
pub mod prelude;
#[cfg(feature = "properties")]
pub mod properties;
pub mod query;
pub mod rate_limit;
pub mod record;
pub mod request;
/// Schedule functions to run outside a direct zome call.
pub mod schedule;
pub mod signal;
pub mod signature;
pub use kitsune_p2p_timestamp as timestamp;
pub mod trace;
#[allow(missing_docs)]
pub mod validate;
/// Tracking versions between the WASM host and guests and other interfaces.
///
/// Needed to ensure compatibility as code develops.
pub mod version;
pub mod warrant;
#[allow(missing_docs)]
pub mod x_salsa20_poly1305;
#[allow(missing_docs)]
pub mod zome;
#[allow(missing_docs)]
pub mod zome_io;

#[allow(missing_docs)]
#[cfg(feature = "fixturators")]
pub mod fixt;

#[cfg(feature = "test_utils")]
pub mod test_utils;

pub use action::Action;
pub use entry::Entry;
pub use prelude::*;
/// Re-exported dependencies
pub mod dependencies {
    pub use ::subtle;
}
use holochain_wasmer_common::WasmError;

#[allow(missing_docs)]
pub trait CallbackResult: Sized {
    /// if a callback result is definitive we should halt any further iterations over remaining
    /// calls e.g. over sparse names or subsequent zomes
    /// typically a clear failure is definitive but success and missing dependencies are not
    /// in the case of success or missing deps, a subsequent callback could give us a definitive
    /// answer like a fail, and we don't want to over-optimise wasm calls and miss a clear failure
    fn is_definitive(&self) -> bool;
    /// when a WasmError is returned from a callback (e.g. via `?` operator) it might mean either:
    ///
    /// - There was an error that prevented the callback from coming to a CallbackResult (e.g. failing to connect to database)
    /// - There was an error that should be interpreted as a CallbackResult::Fail (e.g. data failed to deserialize)
    ///
    /// Typically this can be split as host/wasm errors are the former, and serialization/guest errors the latter.
    /// This function allows each CallbackResult to explicitly map itself.
    fn try_from_wasm_error(wasm_error: WasmError) -> Result<Self, WasmError>;
}

#[macro_export]
/// Serialization for fixed arrays is generally not available in a way that can be derived.
/// Being able to wrap fixed size arrays is important e.g. for crypto safety etc. so this is a
/// simple way to implement serialization so that we can send these types between the host/guest.
macro_rules! fixed_array_serialization {
    ($t:ty, $len:expr) => {
        impl serde::ser::Serialize for $t {
            fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
            where
                S: serde::ser::Serializer,
            {
                serializer.serialize_bytes(&self.0)
            }
        }

        impl<'de> serde::de::Deserialize<'de> for $t {
            fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
            where
                D: serde::de::Deserializer<'de>,
            {
                use serde::de::Error;
                let bytes: &[u8] = serde::de::Deserialize::deserialize(deserializer)?;
                if bytes.len() != $len {
                    let exp_msg = format!("expected {} bytes got: {} bytes", $len, bytes.len());
                    return Err(D::Error::invalid_value(
                        serde::de::Unexpected::Bytes(bytes),
                        &exp_msg.as_str(),
                    ));
                }
                let mut inner: [u8; $len] = [0; $len];
                inner.clone_from_slice(bytes);
                Ok(Self(inner))
            }
        }
    };
}

/// Errors related to the secure primitive macro.
#[derive(Debug, thiserror::Error)]
pub enum SecurePrimitiveError {
    /// We have the wrong number of bytes.
    #[error("Bad sized secure primitive.")]
    BadSize,
}

#[macro_export]
/// Cryptographic secrets are fiddly at the best of times.
///
/// In wasm it is somewhat impossible to have true secrets because wasm memory is not secure.
///
///  - The host can always read wasm memory so any vulnerability in the host compromises the guest.
///  - The host/rust generally doesn't guarantee to immediately wipe/zero out freed memory, either
///    when a zome call is running or after a wasm instance is thrown away.
///
/// Most of the time we should just try to minimise the interaction between wasm and secret data.
///
/// For example, lair keeps all our private keys internal and we can only send it signing requests
/// associated with public keys.
///
/// In other contexts it is more difficult, such as when generating secrets from raw cryptographic
/// random bytes and sending them to peers directly.
///
/// The best we can do here is try to protect ourselves against third parties across the network.
/// e.g. We don't want other machines to simply `remote_call` a successful timing attack.
///
/// MITM attacks are mitigated by the networking implementation itself.
///
/// @todo given how impossible it is for wasm to protect its memory from the host, it would make
/// more sense to:
///
///  - use key exchange protocols like libsodium kx <https://libsodium.gitbook.io/doc/key_exchange>.
///  - keep secrets inside lair with all algorithms behind an API, wasm only has access to opaque
///    references to the secret data.
///
/// @todo implement explicit zeroing, moving and copying of memory for sensitive data.
///       - e.g. the secrecy crate <https://crates.io/crates/secrecy>
macro_rules! secure_primitive {
    ($t:ty, $len:expr) => {
        $crate::fixed_array_serialization!($t, $len);

        /// Constant time equality check.
        /// This mitigates timing attacks where a remote agent can reverse engineer data by
        /// measuring tiny changes in latency associated with optimised equality checks.
        /// More matching bytes = more latency = vulnerability.
        /// This type of attack has been successfully demonstrated over a network despite varied latencies.
        impl PartialEq for $t {
            fn eq(&self, other: &Self) -> bool {
                use $crate::dependencies::subtle::ConstantTimeEq;
                self.0.ct_eq(&other.0).into()
            }
        }

        impl Eq for $t {}

        #[cfg(not(feature = "subtle-encoding"))]
        /// The only meaningful debug information for a cryptograhpic secret is the literal bytes.
        /// Also, encodings like base64 are not constant time so debugging could open some weird
        /// side channel issue trying to be 'human friendly'.
        /// It seems better to never try to encode secrets.
        ///
        /// Note that when using this crate with feature "subtle-encoding", a hex
        /// representation will be used.
        ///
        /// @todo maybe we want something like **HIDDEN** by default and putting the actual bytes
        ///       behind a feature flag?
        impl std::fmt::Debug for $t {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                std::fmt::Debug::fmt(&self.0.to_vec(), f)
            }
        }

        #[cfg(feature = "subtle-encoding")]
        impl std::fmt::Debug for $t {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                let str = String::from_utf8(subtle_encoding::hex::encode(self.0.to_vec()))
                    .unwrap_or_else(|_| "<unparseable signature>".into());
                f.write_str(&str)
            }
        }

        /// Trivial new type derivation.
        /// Secrets should have private interiors and be constructed directly from fixed length
        /// arrays of known length.
        impl From<[u8; $len]> for $t {
            fn from(b: [u8; $len]) -> Self {
                Self(b)
            }
        }

        impl TryFrom<&[u8]> for $t {
            type Error = $crate::SecurePrimitiveError;
            fn try_from(slice: &[u8]) -> Result<Self, Self::Error> {
                if slice.len() == $len {
                    let mut inner = [0; $len];
                    inner.copy_from_slice(slice);
                    Ok(inner.into())
                } else {
                    Err($crate::SecurePrimitiveError::BadSize)
                }
            }
        }

        impl TryFrom<Vec<u8>> for $t {
            type Error = $crate::SecurePrimitiveError;
            fn try_from(v: Vec<u8>) -> Result<Self, Self::Error> {
                Self::try_from(v.as_ref())
            }
        }

        impl AsRef<[u8]> for $t {
            fn as_ref(&self) -> &[u8] {
                &self.0
            }
        }
    };
}

/// Helper macro for implementing ToSql, when using rusqlite as a dependency
#[macro_export]
macro_rules! impl_to_sql_via_as_ref {
    ($s: ty) => {
        impl ::rusqlite::ToSql for $s {
            fn to_sql(&self) -> ::rusqlite::Result<::rusqlite::types::ToSqlOutput<'_>> {
                Ok(::rusqlite::types::ToSqlOutput::Borrowed(
                    self.as_ref().into(),
                ))
            }
        }
    };
}

/// Helper macro for implementing ToSql, when using rusqlite as a dependency
#[macro_export]
macro_rules! impl_to_sql_via_display {
    ($s: ty) => {
        impl ::rusqlite::ToSql for $s {
            fn to_sql(&self) -> ::rusqlite::Result<::rusqlite::types::ToSqlOutput<'_>> {
                Ok(::rusqlite::types::ToSqlOutput::Owned(
                    self.to_string().into(),
                ))
            }
        }
    };
}

/// 10MB of entropy free for the taking.
/// Useful for initializing arbitrary::Unstructured data
#[cfg(any(test, feature = "test_utils"))]
pub static NOISE: once_cell::sync::Lazy<Vec<u8>> = once_cell::sync::Lazy::new(|| {
    use rand::Rng;
    let mut rng = rand::thread_rng();
    std::iter::repeat_with(|| rng.gen())
        .take(10_000_000)
        .collect()
});