1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
//! This module is centered around a thread-local Stack of Span references,
//! with some public functions for pushing and accessing values from the stack.
//! This is primarily used by the autotrace proc macro in holochain_tracing_macros,
//! to automatically push new child spans onto the stack when entering a new function frame.
//! Using functions like `with_top` allow the user to access the stack directly, for situations
//! like needing to take a span context and send it into another thread, or out of the process entirely.

use std::cell::RefCell;
use std::rc::Rc;

use crate::Span;

/// This enum defines how to handle situations where we expect there to be a Span
/// on the stack, but there is none.
#[allow(dead_code)]
enum Mode {
    /// Panic when finding an empty stack. Useful for quickly discovering gaps in tracing coverage
    Panic,
    /// Emit a warning and a full backtrace. Note, this is very noisy and slow!
    Backtrace,
    /// Ignore cases of an empty stack, and just return a null span.
    Noop,
}

const MODE: Mode = Mode::Noop;

thread_local! {
    static SPANSTACK: RefCell<SpanStack> = RefCell::new(SpanStack::default());
}

lazy_static! {
    static ref NOOP_SPAN: Span = Span::noop();
}

/// Internal representation of a stack of Rc<Span>
/// Keep this private! We're doing some careful management of Rc lifetimes here,
/// it would be a shame if these Rc's were to leak out, destroying the guarantees
/// of the span stack.
#[derive(Default)]
struct SpanStack(Vec<Rc<Span>>);

impl SpanStack {

    fn push_span(&mut self, span: Rc<Span>) {
        self.0.push(span);
    }

    fn pop(&mut self) {
        let _ = self.0.pop();
    }

    fn top(&self) -> Option<&Span> {
        self.0.last().map(|s| (*s).as_ref())
    }

    fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
}

/// A guard to track the lifetime of an item on the stack. Items are popped from the stack
/// when these guards are dropped.
/// Each guard corresponds to a single item in the stack, and contains Rc references
/// to each item below this item in the stack.
/// This is such that if a guard for an item is dropped, the item will not be popped from the stack
/// if there are still guards from higher-up items still on the stack.
pub struct SpanStackGuard {
    _spans: Vec<Rc<Span>>,
}

impl SpanStackGuard {
    pub fn new(span: Span) -> Self {
        let span = Rc::new(span);
        let _spans = SPANSTACK.with(|stack| {
            let mut stack = stack.borrow_mut();
            stack.push_span(span.clone());
            stack.0.clone()
        });
        Self { _spans }
    }
}

impl Drop for SpanStackGuard {
    fn drop(&mut self) {
        SPANSTACK.with(|stack| stack.borrow_mut().pop());
    }
}

fn handle_empty_stack(msg: &'static str) {
    match MODE {
        Mode::Panic => panic!(msg),
        Mode::Backtrace => {
            warn!("{}, backtrace:\n{:?}", msg, backtrace::Backtrace::new());
        }
        Mode::Noop => (),
    };
}

/// Push a span onto the stack. The value will automatically be popped when the returned guard
/// is dropped, as well as the guards of any subsequently pushed spans
pub fn push_span(span: Span) -> SpanStackGuard {
    SpanStackGuard::new(span)
}

/// Applies a function to the top of the span stack and pushes the value onto the stack.
/// If the stack is empty, the function will not be executed and None will be returned.
pub fn push_span_with<F: FnOnce(&Span) -> Span>(f: F) -> Option<SpanStackGuard> {
    let maybe_guard = SPANSTACK
        .with(|stack| stack.borrow().top().map(f))
        .map(SpanStackGuard::new);
    if maybe_guard.is_none() {
        handle_empty_stack("Using push_span_with but the span stack is empty! Using noop span.");
    }
    maybe_guard
}

/// If the stack is not empty, return the top item, else return None
pub fn with_top<A, F: FnOnce(Option<&Span>) -> Option<A>>(f: F) -> Option<A> {
    SPANSTACK.with(|stack| f(stack.borrow().top()))
}

pub fn is_empty() -> bool {
    SPANSTACK.with(|stack| stack.borrow().is_empty())
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::Span;

    #[test]
    fn test_push() {
        SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 0));
        {
            let _g0 = push_span(Span::noop());
            SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 1));
            {
                let _g1 = push_span_with(|s| s.child("1"));
                SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 2));
                {
                    let _g2 = push_span_with(|s| s.child("2"));
                    SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 3));
                }
                SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 2));
            }
            SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 1));
        }
        SPANSTACK.with(|stack| assert_eq!(stack.borrow().0.len(), 0));
    }
}