1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
#![cfg_attr(feature = "benchmark", feature(test))]
//! Hidden Markov Models in Rust.
//!
//! This library contains a Rust implementation of a time-invariant Hidden Markov model with
//! discrete observations. It includes maximum likelihood estimation via the Baum-Welch
//! expectation-maximization algorithm and hidden state inference via the Viterbi algorithm.
//!
//! See `hmmm::HMM` for detailed documentation on how to work with this library.
//!
//! Below, the HMM is trained to recognize the pattern `001001001...`
//!
//! ```
//! use hmmm::HMM;
//! use ndarray::{array, Array1};
//! use rand::SeedableRng as _;
//!
//! let training_ys = array![0, 0, 1, 0, 0, 1, 0];
//! let mut rng = rand::rngs::StdRng::seed_from_u64(1337);
//! let hmm = HMM::train(&training_ys, 3, 2, &mut rng);
//! let sampled_ys: Array1<usize> = hmm.sampler(&mut rng)
//!     .map(|sample| sample.y)
//!     .take(10)
//!     .collect();
//! assert_eq!(array![0, 0, 1, 0, 0, 1, 0, 0, 1, 0], sampled_ys);
//! ```
//!
//! ## Building
//!
//! This project uses `cargo-make`. See `Makefile.toml` for a full list of build commands, but the
//! main useful command for this project is `cargo make all`.
//!
//! There is a small amount of benchmarking functionality gated by the `benchmark` feature.
//!
//! ## Notes
//!
//! Sections 17.3 and 17.4 of *Machine Learning a Probabilistic Perspective* by Kevin Murphy, 2012
//! were invaluable as a reference, as was section 13.2 of *Pattern Recognition and Machine
//! Learning* by Christopher Bishop, 2016.
//!
//! I have attempted to make the math notation readable both as rendered HTML and from the source
//! code. The notation is strongly inspired by the Wikipedia page on the Baum-Welch algorithm.
#[cfg(feature = "benchmark")]
extern crate test;

use self::ndarray_utils::*;
use itertools::Itertools;
use ndarray::prelude::*;
use ndarray::{array, s};
use rand::prelude::*;
use spectral::prelude::*;
use std::f64;

#[cfg(feature = "serde-1")]
use serde::{Deserialize, Serialize};

const TOLERANCE: f64 = 1e-5; // Chosen completely arbitrarily

/// This struct represents a trained HMM, including values for each parameter.
///
/// # Math
///
/// The HMM is used to predict a sequence of observations:
///
/// $$Y=(Y_0=y_0, Y_1=y_1, \ldots, Y_{T-1}=y_{T-1})$$
///
/// ...where each $y_t \in [0, K)$.
///
/// It accomplishes this with latent variables for hidden state $X=(X_0, \ldots, X_{T-1})$ where each
/// $x_t \in [0, N)$.
///
/// A trained HMM has three parameters:
/// * $A$, the $N × N$ state transition matrix: $a_{ij}=P(X_t=j|X_{t-1}=i)$
/// * $B$, the $N × K$ observation matrix: $b_{ik}=P(Y_t=y_k|X_t=i)$
/// * $π$, the $N$-length initial state distribution: $π_i=P(X_1=i)$
#[derive(Debug)]
#[cfg_attr(feature = "serde-1", derive(Serialize, Deserialize))]
pub struct HMM {
    pub a: Array2<f64>,
    pub b: Array2<f64>,
    pub pi: Array1<f64>,
}

impl HMM {
    /// Create a new HMM with the given parameters.
    ///
    /// This could be useful for loading a saved trained model.
    ///
    /// Panics if any of:
    /// - Dimensions are invalid
    /// - Probability distributions are invalid
    pub fn new(a: Array2<f64>, b: Array2<f64>, pi: Array1<f64>) -> Self {
        // Check all dimensions
        {
            asserting("B must have a positive number of rows")
                .that(&b.nrows())
                .is_greater_than(0);
            asserting("B must have a positive number of columns")
                .that(&b.ncols())
                .is_greater_than(0);
            assert_eq!(
                a.nrows(),
                b.nrows(),
                "A and B must have the same number of rows"
            );
            assert_eq!(a.nrows(), a.ncols(), "A must be square");
            assert_eq!(a.nrows(), pi.len(), "π must be of length N");
        }

        // Check that each row of A is a distribution
        {
            for a_ij in &a {
                assert_that(a_ij).is_greater_than_or_equal_to(0.0)
            }
            for row in a.genrows() {
                asserting("Each row of A must sum to 1")
                    .that(&row.sum())
                    .is_close_to(1.0, TOLERANCE);
            }
        }

        // Check that each row of B is a distribution
        {
            for b_ik in &b {
                assert_that(b_ik).is_greater_than_or_equal_to(0.0)
            }

            for row in b.genrows() {
                asserting("Each row of B must sum to 1")
                    .that(&row.sum())
                    .is_close_to(1.0, TOLERANCE);
            }
        }

        // Check that π is a distribution
        {
            for pi_i in &pi {
                assert_that(pi_i).is_greater_than_or_equal_to(0.0)
            }

            asserting("π must sum to 1")
                .that(&pi.sum())
                .is_close_to(1.0, TOLERANCE);
        }

        Self { a, b, pi }
    }

    /// $N$, the number of states in this HMM
    pub fn n(&self) -> usize {
        self.b.nrows()
    }

    /// $K$, the number of possible observations that this model can emit
    pub fn k(&self) -> usize {
        self.b.ncols()
    }

    pub fn sampler<'a, R: Rng + ?Sized>(&'a self, rng: &'a mut R) -> HMMSampleIter<R> {
        let a_weighted_choices = self
            .a
            .genrows()
            .into_iter()
            .map(|row| WeightedChoiceFloat::from_pmf(row.as_slice().unwrap()))
            .collect();
        let b_weighted_choices = self
            .b
            .genrows()
            .into_iter()
            .map(|row| WeightedChoiceFloat::from_pmf(row.as_slice().unwrap()))
            .collect();
        let c_weighted_choice = WeightedChoiceFloat::from_pmf(self.pi.as_slice().unwrap());
        HMMSampleIter {
            a_weighted_choices,
            b_weighted_choices,
            c_weighted_choice,
            rng,
            current_state: None,
        }
    }

    /// Given an iterator of observations, this returns a new iterator that yields the probability
    /// of being in each hidden state at each future time step. This method is relatively efficient
    /// from the standpoint of memory and computation time.
    ///
    /// If you can store the whole sequence in memory, there are more accurate ways to compute the
    /// probability of being in each state at a particular point in time, because it is possible to
    /// use the observations from the future to better inform the probability of being in each
    /// hidden state at any particular time t.
    ///
    /// This is not closely related to the meaning of "filter" as in `std::iter::Iterator::filter`.
    ///
    /// Panics if an observation is out of bounds.
    pub fn filter<I>(&self, ys: I) -> HMMFilterIter<I::IntoIter>
    where
        I: IntoIterator<Item = usize>,
    {
        HMMFilterIter {
            hmm: self,
            observations: ys.into_iter(),
            current_item: None,
        }
    }

    /// Given a distribution over states, calculate the probable distribution of states at a time in
    /// the future.
    ///
    /// This is currently only efficient for small values of `n_time_steps`. In order to be more
    /// efficient, we want to be able to efficiently raise `self.a` to a power, which means getting
    /// eigenvalues and eigenvectors.
    ///
    /// Panics if:
    /// - The length of `p_states` is invalid
    /// - `p_states` is not probability distribution
    pub fn predict(&self, mut p_states: Array1<f64>, n_time_steps: usize) -> Array1<f64> {
        asserting("p_states must sum to 1")
            .that(&p_states.sum())
            .is_close_to(1.0, TOLERANCE);
        for _ in 0..n_time_steps {
            p_states = p_states.dot(&self.a)
        }
        p_states
    }

    // Backwards: given observations after (not including) time t, what is the probability that
    // we are in each state at time t?
    //
    // Since this iterator runs backwards, it is collected backwards into the Vec. When iterated
    // backwards, element `t` of the iterator contains the p_states at time `t`.
    fn filter_backwards(&self, ys: &Array1<usize>) -> Vec<Array1<f64>> {
        ys.iter()
            .rev()
            .scan(
                None,
                |p_states_option: &mut Option<Array1<f64>>, &observation| {
                    let (new, old) = if let Some(p_states) = p_states_option {
                        (
                            self.a.dot(p_states) * self.b.column(observation),
                            self.a.dot(p_states),
                        )
                    } else {
                        (self.b.column(observation).to_owned(), uniform(self.n()))
                    };
                    *p_states_option = Some(new.normalize("filter_backwards_new"));
                    Some(old.normalize("filter_backwards_old"))
                },
            )
            .collect()
    }

    /// Given a sequence of observations, compute the probability of being in any given state at
    /// each point in time.
    ///
    /// Return a $T × N$ matrix where element (t, k) is the probability that we are in state k at
    /// time t.
    ///
    /// This is the forward-backward algorithm.
    pub fn smooth(&self, ys: &Array1<usize>) -> Array2<f64> {
        // Forwards: given observations up to and including t, what is the probability that we are
        // in each state at time t?
        let forwards = self.filter(ys.iter().cloned());

        // Backwards: given observations after (not including) time t, what is the probability that
        // we are in each state at time t?
        let backwards = self.filter_backwards(&ys);

        // Construct the result as an Array1 of length $T * N$, then reshape it it into an array of
        // shape $T × N$.
        let mut to_return = Array2::zeros((ys.len(), self.n()));
        forwards
            .zip(backwards.iter().rev())
            .enumerate()
            .for_each(|(t, (forward, backward))| {
                to_return
                    .slice_mut(s![t, ..])
                    .assign(&(forward.p_states * backward).normalize("smooth"))
            });
        to_return
    }

    /// This is the Viterbi algorithm. Given a sequence of observations, return the most likely
    /// sequence of states.
    ///
    /// It's possible to do this in log space but I normalized instead to make it feel more like the
    /// forwards-backwards algorithm.
    ///
    pub fn most_likely_sequence(&self, ys: &Array1<usize>) -> Array1<usize> {
        // Special-case when the sequence of observations is empty
        if ys.is_empty() {
            return array![];
        }

        // probs is a T × N matrix where probs[t, i] is the probability that we are in state i at
        // time t given all observations up to time t and assuming the most likely sequence of
        // hidden states up to time t.
        let mut probs = Array2::zeros((ys.len(), self.n()));

        // x_to_prev_x is a (T - 1) × N matrix where each entry x_to_prev_x[t, i] is the most likely
        // state that would have occurred at time t - 1 given that we're in state i at time t.
        let mut x_to_prev_x = Array2::zeros((ys.len() - 1, self.n()));

        probs
            .row_mut(0)
            .assign(&(self.pi.clone() * self.b.column(ys[0])).normalize("viterbi_0"));

        for t in 1..ys.len() {
            let y = ys[t];
            asserting("y is too big").that(&y).is_less_than(&self.k());
            for i in 0..self.n() {
                for j in 0..self.n() {
                    let prob_i_j = probs[(t - 1, i)] * self.a[(i, j)] * self.b[(j, y)];
                    if prob_i_j > probs[(t, j)] {
                        probs[(t, j)] = prob_i_j;
                        x_to_prev_x[(t - 1, j)] = i;
                    }
                }
            }

            // Normalize to prevent underflow
            probs.row_mut(t).nip("viterbi");
        }

        let (mut i, _p) = probs.row(ys.len() - 1).maxfx();
        let mut to_return = Array1::from_elem(ys.len(), usize::max_value());
        to_return[ys.len() - 1] = i;
        for t in (0..ys.len() - 1).rev() {
            i = x_to_prev_x[(t, i)];
            to_return[t] = i;
        }
        to_return
    }

    /// Find the maximum likelihood estimate for the parameters. Caveats:
    /// - If there is not enough data, the MLE is undefined. This implementation will
    ///   use a uniform prior for any parameters for which there isn't enough data.
    /// - This is not guaranteed to find a global minimal, only a local minimum.
    /// - Due to a lack of identifiability, an HMM with $N$ states has $N!$ equivalent solutions.
    /// - Taking the most likely state at each point in time doesn't necessarily result in the most
    ///   likely sequence of states, or even a possible sequence of states. If you want that, use
    ///   `HMM::most_likely_states`.
    ///
    /// Baum-Welch (Baum et. al. 1970) is a variant of the Expectation-Maximization algorithm for
    /// HMMs.
    ///
    /// Let $α_i(t) = P(Y_0=y_0, \ldots, Y_t=y_t, X_t=i | θ)$
    ///
    /// Let $β_i(t) = P(Y_{t+1}=y_{t+1}, \ldots, Y_T=y_T | X_t=i, θ)$
    ///
    /// $$
    /// γ_i(t) = P(X_t=i|Y,θ) = \frac{P(X_t=i,Y|θ)}{P(Y|θ)} =
    ///     \frac{α_i(t)β_i(t)}{\sum_{j=1}^N α_j(t)β_j(t)}
    /// $$
    ///
    /// $γ_i(t)$ is the same thing that the `smooth` method computes: the probability of being in
    /// state $i$ at time $t$, conditioned on both past and future observations.
    ///
    /// $ξ_{ij}(t)$ is the probability of being in state $i$ at time $t$ and in state $j$ at time
    /// $t + 1$:
    ///
    /// $$
    /// ξ_{ij}(t) = P(X_t=i,X_{t+1}=j|Y,θ)
    ///             = \frac{P(X_t=i,X_{t+1}=j,Y|θ)}{P(Y|θ)}
    ///             = \frac{α_i(t) a_{ij} β_j(t+1) b_j(y_{t+1})}
    ///               {\sum_{i=1}^N \sum_{j=1}^N α_i(t) a_{ij} β_j(t+1) b_j(y_{t+1}) }
    /// $$
    ///
    /// Updating the counts:
    ///
    /// $$
    /// π_i^* = γ_i(0)
    /// $$
    ///
    /// For $α$:
    ///
    /// $$
    /// α_{ij}^*=\frac{\sum^{T-1}\_{t=1}ξ\_{ij}(t)}{\sum^{T-1}\_{t=1}γ_i(t)}
    /// $$
    ///
    /// For $β$:
    ///
    /// $$
    /// β_i^*(v_k)=\frac{\sum^T_{t=1} 1_{y_t=v_k} γ_i(t)}{\sum^T_{t=1} γ_i(t)}
    /// $$
    pub fn train<R: Rng>(ys: &Array1<usize>, n: usize, k: usize, rng: &mut R) -> Self {
        for &y in ys {
            assert!(y < k);
        }

        let a = Array2::from_shape_fn((n, n), |_| rng.gen::<f64>()).normalize_rows();
        let b = Array2::from_shape_fn((n, k), |_| rng.gen::<f64>()).normalize_rows();
        let pi = Array1::from_shape_fn(n, |_| rng.gen::<f64>()).normalize("π");

        let uniform_states_dim = Array1::ones(n).normalize("N");
        let uniform_obs_dim = Array1::ones(k).normalize("K");

        let mut hmm = HMM::new(a, b, pi);

        for _ in 0..100 {
            let (a, b, pi) = {
                let alphas: Vec<Array1<f64>> = hmm
                    .filter(ys.iter().cloned())
                    .map(|alpha| alpha.p_states)
                    .collect_vec();
                let betas: Vec<Array1<f64>> =
                    hmm.filter_backwards(&ys).into_iter().rev().collect_vec();
                let gammas: Vec<Array1<f64>> = alphas
                    .iter()
                    .zip(betas.iter())
                    .map(|(alpha_t, beta_t)| (alpha_t * beta_t).normalize("γ"))
                    .collect_vec();

                let xis: Vec<Array2<f64>> = alphas
                    .iter()
                    .zip(betas.iter())
                    .zip(ys.iter())
                    .tuple_windows()
                    .map(
                        |(((alpha_t0, _beta_t0), _obs_t0), ((_alpha_t1, beta_t1), obs_t1))| {
                            let mut xi = Array2::zeros((n, n));
                            for i in 0..n {
                                for j in 0..n {
                                    xi[(i, j)] = alpha_t0[i]
                                        * hmm.a[(i, j)]
                                        * beta_t1[j]
                                        * hmm.b[(j, *obs_t1)]
                                }
                            }
                            let xi_sum: f64 = xi.iter().sum();
                            xi /= xi_sum;
                            xi
                        },
                    )
                    .collect_vec();

                // a is of shape N x N
                let mut a = Array2::zeros((n, n));
                for i in 0..n {
                    let t_minus_1 = 1.max(gammas.len()) - 1;
                    let gammas_sum: f64 = gammas[..t_minus_1].iter().map(|gamma| gamma[i]).sum();
                    if gammas_sum == 0.0 {
                        // If we have never seen a transition away from state i, fall back to a
                        // uniform prior.
                        a.row_mut(i).assign(&uniform_states_dim);
                    } else {
                        for j in 0..n {
                            let xis_sum: f64 = xis.iter().map(|xi| xi[(i, j)]).sum();
                            a[(i, j)] = xis_sum / gammas_sum;
                        }
                    }
                }

                // b is of shape N x K
                let mut b = Array2::zeros((n, k));
                for i in 0..n {
                    let gammas_sum: f64 = gammas.iter().map(|gamma| gamma[i]).sum();
                    if gammas_sum == 0.0 {
                        // If we have never seen state i, fall back to a uniform prior
                        b.row_mut(i).assign(&uniform_obs_dim);
                    } else {
                        for k in 0..k {
                            let numerator: f64 = gammas
                                .iter()
                                .zip(ys)
                                .map(|(gamma, obs)| if k == *obs { gamma[i] } else { 0.0 })
                                .sum();
                            b[(i, k)] = numerator / gammas_sum;
                        }
                    }
                }

                // pi is of length N
                let pi = if gammas.is_empty() {
                    // A special case for when there are no observations
                    uniform_states_dim.clone()
                } else {
                    gammas[0].to_owned()
                };

                (a, b, pi)
            };

            hmm = HMM::new(a, b, pi);
        }

        hmm
    }

    /// Return the log likelihood of a sequence of states and observations. This is not a typical
    /// use case, because often the vector of hidden states is not available.
    ///
    /// Panics if:
    /// - The number of states and observations is not equal
    /// - A state or observation is out of bounds
    pub fn ll_given_states(&self, xs: &[usize], ys: &[usize]) -> f64 {
        assert_eq!(xs.len(), ys.len());

        // This special case is required b/c we treat the first time step specially
        if xs.is_empty() {
            return 0.0;
        }

        // When looping, we skip the initial observation
        let initial_state_log_prob = self.pi[xs[0]].log2();
        let initial_observation_log_prob = self.b[(xs[0], ys[0])].log2();
        let the_rest: f64 = xs
            .iter()
            .zip(ys)
            .tuple_windows()
            .map(|((state0, _observation0), (state1, observation1))| {
                let transition_log_prob = self.a[(*state0, *state1)].log2();
                let observation_log_prob = self.b[(*state1, *observation1)].log2();
                transition_log_prob + observation_log_prob
            })
            .sum();

        initial_state_log_prob + initial_observation_log_prob + the_rest
    }
}

fn uniform(n: usize) -> Array1<f64> {
    Array1::from_elem(n, 1.0 / (n as f64))
}

/// The item yielded by `HMMSampleIter`
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct HMMSample {
    pub x: usize,
    pub y: usize,
}

/// An iterator that returns random samples from an HMM
pub struct HMMSampleIter<'a, R: Rng + ?Sized + 'a> {
    a_weighted_choices: Vec<WeightedChoiceFloat>,
    b_weighted_choices: Vec<WeightedChoiceFloat>,
    c_weighted_choice: WeightedChoiceFloat,
    rng: &'a mut R,
    current_state: Option<usize>,
}

impl<'a, R: Rng + ?Sized> Iterator for HMMSampleIter<'a, R> {
    type Item = HMMSample;

    fn next(&mut self) -> Option<Self::Item> {
        let state = if let Some(current_state) = self.current_state {
            self.a_weighted_choices[current_state].sample(self.rng)
        } else {
            self.c_weighted_choice.sample(self.rng)
        };
        self.current_state = Some(state);
        Some(HMMSample {
            x: state,
            y: self.b_weighted_choices[state].sample(self.rng),
        })
    }
}

/// The item yielded by the `HMMFilterIter`.
#[derive(Clone, Debug, PartialEq)]
pub struct HMMFilterItem {
    p_states: Array1<f64>, // The probability that we are in each state currently
}

/// This is an iterator returned by `HMM::filter`.
pub struct HMMFilterIter<'a, I>
where
    I: Iterator<Item = usize>,
{
    hmm: &'a HMM,
    observations: I,
    current_item: Option<HMMFilterItem>,
}

impl<'a, I> Iterator for HMMFilterIter<'a, I>
where
    I: Iterator<Item = usize>,
{
    type Item = HMMFilterItem;

    fn next(&mut self) -> Option<Self::Item> {
        self.observations.next().map(|observation| {
            let observation_probs = self.hmm.b.column(observation).to_owned();
            let transition_probs = if let Some(ref current_item) = self.current_item {
                current_item.p_states.dot(&self.hmm.a)
            } else {
                self.hmm.pi.to_owned()
            };
            let mut p_states = observation_probs * transition_probs;
            // TODO what if no state is possible, eek
            let p_states_sum: f64 = p_states.iter().sum();
            p_states /= p_states_sum;

            let item = HMMFilterItem { p_states };
            self.current_item = Some(item.clone());
            item
        })
    }
}

/// Sample from a [categorical distribution](https://en.wikipedia.org/wiki/Categorical_distribution)
/// where the weight for each category is a float.
pub struct WeightedChoiceFloat {
    cmf: Vec<f64>,
}

impl WeightedChoiceFloat {
    pub fn from_pmf(pmf: &[f64]) -> Self {
        let cmf = pmf
            .iter()
            .scan(0.0, |state, x| {
                *state += x;
                Some(*state)
            })
            .collect();
        Self { cmf }
    }
}

impl Distribution<usize> for WeightedChoiceFloat {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        let sampled_uniform = rng.gen::<f64>();
        let (i, _x) = self
            .cmf
            .iter()
            .enumerate()
            .find(|(_i, &x)| sampled_uniform < x)
            .unwrap();
        i
    }
}

/// Create a fast RNG that with reproducible outputs that isn't necessarily cryptographically
/// strong.
#[cfg(test)]
fn new_rng() -> impl Rng {
    rand::rngs::StdRng::seed_from_u64(1337)
}

#[cfg(test)]
mod tests_weighted_choice_float {
    use super::*;

    #[test]
    fn unit() {
        let wcf = WeightedChoiceFloat::from_pmf(&[1.0]);
        assert_eq!(0, wcf.sample(&mut new_rng()))
    }

    #[test]
    fn first() {
        let wcf = WeightedChoiceFloat::from_pmf(&[1.0, 0.0]);
        assert_eq!(0, wcf.sample(&mut new_rng()))
    }

    #[test]
    fn last() {
        let wcf = WeightedChoiceFloat::from_pmf(&[0.0, 1.0]);
        assert_eq!(1, wcf.sample(&mut new_rng()))
    }

    #[test]
    fn middle() {
        let wcf = WeightedChoiceFloat::from_pmf(&[0.0, 1.0, 0.0]);
        assert_eq!(1, wcf.sample(&mut new_rng()))
    }
}

mod ndarray_utils {
    use itertools::Itertools;
    use ndarray::prelude::*;
    use ndarray::*;
    use num_traits::{Float, Num, Zero};

    pub trait ArrayFloat<T: Float> {
        fn l2_distance(&self, rhs: &Self) -> T;
    }

    pub trait Array1Float<T: Float> {
        /// Along a 1D array, return the maximum float value and its index
        ///
        /// If there are multiple equal maximum values, one of them will be returned with its index.
        ///
        /// The behavior of this function is unspecified if the array contains NaNs.
        ///
        /// See also `maxfx`
        fn maxf(&self) -> Option<(usize, T)>;

        /// The "expecting" version of `maxf`
        fn maxfx(&self) -> (usize, T);
    }

    pub trait Array1FloatMut {
        fn nip(&mut self, label: &'static str);

        fn normalize(self, label: &'static str) -> Self;
    }

    pub trait Array1Num<T>
    where
        T: Copy + Num,
    {
        fn sum(&self) -> T;
    }

    pub trait Array2FloatMut {
        fn nip_rows(&mut self);

        fn normalize_rows(self) -> Self;
    }

    impl<D, S> ArrayFloat<f64> for ArrayBase<S, D>
    where
        D: Dimension,
        S: Data<Elem = f64>,
    {
        fn l2_distance(&self, rhs: &Self) -> f64 {
            assert_eq!(self.shape(), rhs.shape());
            self.iter()
                .zip(rhs.iter())
                .map(|(&x, &y)| (y - x).powi(2))
                .sum::<f64>()
                .sqrt()
        }
    }

    impl<T, S> Array1Float<T> for ArrayBase<S, Ix1>
    where
        T: Float,
        S: Data<Elem = T>,
    {
        fn maxf(&self) -> Option<(usize, T)> {
            self.iter()
                .enumerate()
                .fold1(|(i0, v0), (i1, v1)| if v0 > v1 { (i0, v0) } else { (i1, v1) })
                .map(|(i, &v)| (i, v))
        }

        fn maxfx(&self) -> (usize, T) {
            self.maxf()
                .expect("maxfx failed because the input had length 0")
        }
    }

    impl<S> Array1FloatMut for ArrayBase<S, Ix1>
    where
        S: DataMut + Data<Elem = f64>,
    {
        fn nip(&mut self, label: &'static str) {
            let sum: f64 = self.sum();
            assert!(
                sum.is_sign_positive(),
                format!("Sum of {} must be positive", label)
            );
            (*self) /= sum;
        }

        fn normalize(mut self, label: &'static str) -> Self {
            self.nip(label);
            self
        }
    }

    impl<T, S> Array1Num<T> for ArrayBase<S, Ix1>
    where
        T: Copy + Num,
        S: Data<Elem = T>,
    {
        fn sum(&self) -> T {
            self.iter().fold(Zero::zero(), |v0, &v1| v0 + v1)
        }
    }

    impl<S> Array2FloatMut for ArrayBase<S, Ix2>
    where
        S: DataMut + Data<Elem = f64>,
    {
        fn nip_rows(&mut self) {
            for mut row in self.genrows_mut() {
                let sum: f64 = row.sum();
                assert!(sum > Zero::zero());
                row /= sum;
            }
        }

        fn normalize_rows(mut self) -> Self {
            self.nip_rows();
            self
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use counter::Counter;
    use lazy_static::lazy_static;
    use std::iter::repeat_with;

    lazy_static! {
        static ref HMM_UNIT: HMM = HMM::new(array![[1.0]], array![[1.0]], array![1.0]);
    }

    lazy_static! {
        static ref HMM_PERIODIC: HMM = {
            HMM::new(
                array![[0.0, 1.0], [1.0, 0.0]],
                array![[0.0, 1.0], [1.0, 0.0]],
                array![1.0, 0.0],
            )
        };
    }

    // A hand-calculated table of paths where each path is equally likely.
    //
    // 1 time step (state only)
    // 0
    // 2
    //
    // 1 time step (state + observation)
    // 0/0
    // 2/1
    //
    // 2 time steps (states only)
    // 0, 0
    // 0, 1
    // 0, 2
    // 0, 2
    // 2, 0
    // 2, 1
    // 2, 1
    // 2, 2
    //
    // 2 time steps (states + observations)
    // 0/0, 0/0
    // 0/0, 0/0
    // 0/0, 1/0
    // 0/0, 1/1
    // 0/0, 2/1
    // 0/0, 2/1
    // 0/0, 2/1
    // 0/0, 2/1
    // 2/1, 0/0
    // 2/1, 0/0
    // 2/1, 1/0
    // 2/1, 1/0
    // 2/1, 1/1
    // 2/1, 1/1
    // 2/1, 2/1
    // 2/1, 2/1
    lazy_static! {
        static ref HMM_FANCY: HMM = {
            HMM::new(
                array![[0.25, 0.25, 0.5], [0.5, 0.25, 0.25], [0.25, 0.5, 0.25]],
                array![[1.0, 0.0], [0.5, 0.5], [0.0, 1.0]],
                array![0.5, 0.0, 0.5],
            )
        };
    }

    // 1 time step (state + observation)
    // 0/0
    // 0/0
    // 0/1
    // 0/1
    // 1/0
    // 1/0
    // 1/0
    // 1/1
    //
    // 2 time steps (states only)
    // 0, 0
    // 0, 1
    // 0, 1
    // 0, 1
    // 1, 0
    // 1, 0
    // 1, 1
    // 1, 1
    //
    // 2 time steps (states + observations)
    lazy_static! {
        static ref HMM_COOL: HMM = {
            HMM::new(
                array![[0.25, 0.75], [0.5, 0.5]],
                array![[0.5, 0.5], [0.75, 0.25]],
                array![0.5, 0.5],
            )
        };
    }

    #[test]
    fn sampler_unit() {
        let rng = &mut new_rng();
        let mut sampler = HMM_UNIT.sampler(rng);
        assert_eq!(HMMSample { x: 0, y: 0 }, sampler.next().unwrap());
        assert_eq!(HMMSample { x: 0, y: 0 }, sampler.next().unwrap());
    }

    #[test]
    fn sampler_periodic() {
        let rng = &mut new_rng();
        let mut sampler = HMM_PERIODIC.sampler(rng);
        assert_eq!(HMMSample { x: 0, y: 1 }, sampler.next().unwrap());
        assert_eq!(HMMSample { x: 1, y: 0 }, sampler.next().unwrap());
        assert_eq!(HMMSample { x: 0, y: 1 }, sampler.next().unwrap());
    }

    #[test]
    fn ll_given_states_empty() {
        assert!((0.0 - HMM_UNIT.ll_given_states(&[], &[])).abs() < f64::EPSILON)
    }

    #[test]
    fn ll_given_states_one() {
        assert!((0.0 - HMM_UNIT.ll_given_states(&[0], &[0])).abs() < f64::EPSILON)
    }

    #[test]
    fn ll_given_states_certain() {
        assert!((0.0 - HMM_PERIODIC.ll_given_states(&[0, 1, 0], &[1, 0, 1])).abs() < f64::EPSILON)
    }

    #[test]
    fn ll_given_states_impossible_initial_state() {
        let r = HMM_PERIODIC.ll_given_states(&[1], &[0]);
        assert!(r.is_infinite() & r.is_sign_negative())
    }

    #[test]
    fn ll_given_states_impossible_transition() {
        let r = HMM_PERIODIC.ll_given_states(&[0, 0], &[1, 1]);
        assert!(r.is_infinite() & r.is_sign_negative())
    }

    #[test]
    fn ll_given_states_impossible_observation() {
        let r = HMM_PERIODIC.ll_given_states(&[0], &[0]);
        assert!(r.is_infinite() & r.is_sign_negative())
    }

    #[test]
    fn filter_empty() {
        assert_eq!(
            Vec::<HMMFilterItem>::new(),
            HMM_FANCY.filter(std::iter::empty()).collect_vec()
        )
    }

    #[test]
    fn filter_zero() {
        assert_eq!(
            vec![HMMFilterItem {
                p_states: array![1.0, 0.0, 0.0]
            }],
            HMM_FANCY.filter(vec![0]).collect_vec(),
            "must be in state 0 because we can't start in state 1 and state 2 can't emit 0"
        )
    }

    #[test]
    fn filter_one() {
        assert_eq!(
            vec![HMMFilterItem {
                p_states: array![0.0, 0.0, 1.0]
            }],
            HMM_FANCY.filter(vec![1]).collect_vec(),
            "must be in state 2 because we can't start in state 1 and state 0 can't emit 1"
        )
    }

    /// Calculated by hand using the probability table for HMM_FANCY
    #[test]
    fn filter_zero_zero() {
        assert_eq!(
            vec![
                HMMFilterItem {
                    p_states: array![1.0, 0.0, 0.0]
                },
                HMMFilterItem {
                    p_states: array![2.0 / 3.0, 1.0 / 3.0, 0.0]
                },
            ],
            HMM_FANCY.filter(vec![0, 0]).collect_vec(),
        )
    }

    /// Calculated by hand using the probability table for HMM_FANCY
    #[test]
    fn filter_zero_one() {
        assert_eq!(
            vec![
                HMMFilterItem {
                    p_states: array![1.0, 0.0, 0.0]
                },
                HMMFilterItem {
                    p_states: array![0.0, 1.0 / 5.0, 4.0 / 5.0]
                },
            ],
            HMM_FANCY.filter(vec![0, 1]).collect_vec(),
        )
    }

    /// Calculated by hand using the probability table for HMM_FANCY
    #[test]
    fn filter_one_zero() {
        assert_eq!(
            vec![
                HMMFilterItem {
                    p_states: array![0.0, 0.0, 1.0]
                },
                HMMFilterItem {
                    p_states: array![0.5, 0.5, 0.0]
                },
            ],
            HMM_FANCY.filter(vec![1, 0]).collect_vec(),
        )
    }

    /// Calculated by hand using the probability table for HMM_FANCY
    #[test]
    fn filter_one_one() {
        assert_eq!(
            vec![
                HMMFilterItem {
                    p_states: array![0.0, 0.0, 1.0]
                },
                HMMFilterItem {
                    p_states: array![0.0, 0.5, 0.5]
                },
            ],
            HMM_FANCY.filter(vec![1, 1]).collect_vec(),
        )
    }

    /// Calculated by hand by looking at the transition matrix
    #[test]
    fn predict_zero_steps() {
        assert_eq!(
            array![0.5, 0.5, 0.0],
            HMM_FANCY.predict(array![0.5, 0.5, 0.0], 0)
        )
    }

    /// Calculated by hand by looking at the transition matrix
    #[test]
    fn predict_one_step() {
        assert_eq!(
            array![0.375, 0.25, 0.375],
            HMM_FANCY.predict(array![0.5, 0.5, 0.0], 1)
        )
    }

    /// Calculated by hand by looking at the transition matrix
    #[test]
    fn predict_two_steps() {
        assert_eq!(
            array![0.3125, 0.34375, 0.34375],
            HMM_FANCY.predict(array![0.5, 0.5, 0.0], 2)
        )
    }

    /// Sample a sequence from this HMM that produces the given sequence of observations. This will
    /// only work well for few observations.
    fn sample_matching<R: Rng>(
        hmm: &HMM,
        observations: &Array1<usize>,
        rng: &mut R,
    ) -> Array1<HMMSample> {
        for _ in 0..10000 {
            let samples = hmm
                .sampler(rng)
                .take(observations.len())
                .collect::<Array1<_>>();
            let matches = observations
                .iter()
                .zip(&samples)
                .all(|(&observation, sample)| observation == sample.y);
            if matches {
                return samples;
            }
        }
        panic!("That was an unlikely sequence of observations")
    }

    /// Calculate an approximation of smoothing by sampling. Useful for testing `smooth`.
    fn smooth_sampled(hmm: &HMM, observations: &Array1<usize>, n_iterations: usize) -> Array2<f64> {
        let mut rng = new_rng();
        let mut counts = Array2::zeros((observations.len(), hmm.n()));
        for _ in 0..n_iterations {
            let samples = sample_matching(hmm, observations, &mut rng);
            for (t, sample) in samples.iter().enumerate() {
                counts[(t, sample.x)] += 1.0;
            }
        }

        counts.normalize_rows()
    }

    /// Calculate an approximation of most likely sequence by sampling. Useful for testing
    /// `most_likely_sequence`.
    fn most_likely_sequence_sampled(
        hmm: &HMM,
        observations: &Array1<usize>,
        n_iterations: usize,
    ) -> Array1<usize> {
        let mut rng = new_rng();
        let (sequence, count) = dbg!(repeat_with(|| sample_matching(hmm, observations, &mut rng))
            .take(n_iterations)
            .collect::<Counter<_>>()
            .most_common())
        .remove(0);
        assert_that(&count).is_greater_than(0);
        sequence.map(|hmm_sample| hmm_sample.x)
    }

    fn test_smooth(observations: Array1<usize>, n_iterations: usize) {
        let expected = smooth_sampled(&HMM_COOL, &observations, n_iterations);
        let actual = HMM_COOL.smooth(&observations);
        let distance = expected.l2_distance(&actual);
        assert_that(&distance).is_less_than(0.3);
    }

    #[test]
    fn test_smooth_zero() {
        test_smooth(array![0], 100);
    }

    #[test]
    fn test_smooth_one() {
        test_smooth(array![0], 100);
    }

    #[test]
    fn test_smooth_zero_zero() {
        test_smooth(array![0, 0], 100);
    }

    #[test]
    fn test_smooth_zero_one() {
        test_smooth(array![0, 1], 100);
    }

    #[test]
    fn test_smooth_zero_zero_zero() {
        test_smooth(array![0, 0, 0], 10000);
    }

    #[test]
    fn test_smooth_zero_one_one() {
        test_smooth(array![0, 1, 1], 10000);
    }

    #[test]
    fn test_train_n_1_k_1_no_observations() {
        let observations = array![];
        let hmm = HMM::train(&observations, 1, 1, &mut new_rng());
        assert_eq!(hmm.a, array![[1.0]]);
        assert_eq!(hmm.b, array![[1.0]]);
        assert_eq!(hmm.pi, array![1.0]);
    }

    #[test]
    fn test_train_n_2_k_2_no_observations() {
        let observations = array![];
        let hmm = HMM::train(&observations, 2, 2, &mut new_rng());
        assert_eq!(hmm.a, array![[0.5, 0.5], [0.5, 0.5]]);
        assert_eq!(hmm.b, array![[0.5, 0.5], [0.5, 0.5]]);
        assert_eq!(hmm.pi, array![0.5, 0.5]);
    }

    // An HMM with one state that always emits the same thing
    #[test]
    fn test_train_n_1_k_1_constant() {
        let observations = array![0, 0];
        let hmm = HMM::train(&observations, 1, 1, &mut new_rng());
        assert_eq!(hmm.a, array![[1.0]]);
        assert_eq!(hmm.b, array![[1.0]]);
        assert_eq!(hmm.pi, array![1.0]);
    }

    // An HMM with one state that always emits the same thing
    #[test]
    fn test_train_n_1_k_2_constant() {
        let observations = array![0, 0];
        let hmm = HMM::train(&observations, 1, 2, &mut new_rng());
        assert_eq!(hmm.a, array![[1.0]]);
        assert_eq!(hmm.b, array![[1.0, 0.0]]);
        assert_eq!(hmm.pi, array![1.0]);
    }

    // An HMM with one state that emits one of two things randomly
    #[test]
    fn test_train_n_1_k_2_random() {
        let observations = array![0, 1];
        let hmm = HMM::train(&observations, 1, 2, &mut new_rng());
        assert_eq!(hmm.a, array![[1.0]]);
        assert_eq!(hmm.b, array![[0.5, 0.5]]);
        assert_eq!(hmm.pi, array![1.0]);
    }

    /// This HMM should switch between its two states each time step
    #[test]
    fn test_train_n_2_k_2() {
        let observations = array![0, 1, 0];
        let hmm = HMM::train(&observations, 2, 2, &mut new_rng());

        // There are two solutions to this MLE problem
        assert_eq!(hmm.a, array![[0.0, 1.0], [1.0, 0.0]]);
        if hmm.pi == array![0.0, 1.0] {
            assert_eq!(hmm.b, array![[0.0, 1.0], [1.0, 0.0]]);
        } else {
            assert_eq!(hmm.b, array![[1.0, 0.0], [0.0, 1.0]]);
            assert_eq!(hmm.pi, array![1.0, 0.0]);
        }
    }

    #[test]
    fn test_viterbi_empty() {
        let ys = array![];
        assert_eq!(
            HMM_FANCY.most_likely_sequence(&ys),
            Array1::<usize>::zeros(0)
        );
    }

    #[test]
    fn test_viterbi_0() {
        let ys = array![0];
        assert_eq!(HMM_FANCY.most_likely_sequence(&ys), array![0]);
    }

    #[test]
    fn test_viterbi_1() {
        let ys = array![1];
        assert_eq!(HMM_FANCY.most_likely_sequence(&ys), array![2]);
    }

    #[test]
    fn test_viterbi_0_0() {
        let ys = array![0, 0];
        assert_eq!(
            HMM_FANCY.most_likely_sequence(&ys),
            most_likely_sequence_sampled(&HMM_FANCY, &ys, 1000)
        );
    }

    #[test]
    fn test_viterbi_0_1() {
        let ys = array![0, 1];
        assert_eq!(
            HMM_FANCY.most_likely_sequence(&ys),
            most_likely_sequence_sampled(&HMM_FANCY, &ys, 1000)
        );
    }

    #[test]
    fn test_viterbi() {
        let ys = array![0, 1, 0, 1];
        assert_eq!(
            HMM_FANCY.most_likely_sequence(&ys),
            most_likely_sequence_sampled(&HMM_FANCY, &ys, 10000)
        );
    }
}

#[cfg(all(test, feature = "serde-1"))]
mod serde_test {
    use super::*;

    #[test]
    fn test_serde() {
        let hmm_unit: HMM = { HMM::new(array![[1.0]], array![[1.0]], array![1.0]) };

        let deser = serde_json::to_string(&hmm_unit).unwrap();
        let ser: HMM = serde_json::from_str(&deser).unwrap();

        assert_eq!(hmm_unit.a, ser.a);
        assert_eq!(hmm_unit.b, ser.b);
        assert_eq!(hmm_unit.pi, ser.pi);
    }
}

#[cfg(feature = "benchmark")]
mod benchmark {
    #[bench]
    fn bench(b: &mut test::Bencher) {
        use crate::*;

        let mut rng = new_rng();
        let observations = [0, 1].iter().cycle().take(1001).cloned().collect();
        b.iter(|| {
            HMM::train(&observations, 1, 2, &mut rng);
        });
    }
}