1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
//! Key derivation paths: locations within the hierarchical derivation tree.
//!
//! Paths are lists of "binary safe" (a.k.a. "8-bit clean") components that
//! specify a location within a tree of keys. Every path within the hierarchy
//! describes a unique, unrelated key.
//!
//! For convenience, HKD32 also supports a string notation inspired by BIP32:
//! <https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#the-key-tree>
//!
//! This notation is similar to Unix paths:
//!
//! `/first-component/second-component/.../nth-component`
//!
//! This corresponds to the following bytestring segments:
//!
//! `[b"first-component", b"second-component", ..., b"nth-component"]`
//!
//! Paths also support a binary serialization, in which each component is
//! prefixed by its length. Note that this requires the maximum component
//! length is 256, a limitation generally enforced by the protocol.

use super::Error;
#[cfg(feature = "alloc")]
use crate::{pathbuf::PathBuf, DELIMITER};
#[cfg(feature = "alloc")]
use alloc::{str, string::String, vec::Vec};
#[cfg(feature = "alloc")]
use core::fmt::{self, Debug};

/// Maximum length of a derivation component
pub const MAX_COMPONENT_LENGTH: usize = 256;

/// Key derivation paths: location within a key hierarchy which
/// names/identifies a specific key.
///
/// This is the reference type. The corresponding owned type is `hkd32::Path`
/// (ala the corresponding types in `std`).
#[derive(Eq, Hash, PartialEq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct Path([u8]);

impl Path {
    /// Create a path from a byte slice.
    ///
    /// Returns `Error` if the path is malformed.
    // TODO(tarcieri): use a safe transparent wrapper type
    // Pre-RFC: <https://internals.rust-lang.org/t/pre-rfc-patterns-allowing-transparent-wrapper-types/10229>
    #[allow(unsafe_code)]
    pub fn new<P>(path: &P) -> Result<&Self, Error>
    where
        P: AsRef<[u8]> + ?Sized,
    {
        if Components::new(path.as_ref()).validate() {
            Ok(unsafe { &*(path.as_ref() as *const [u8] as *const Self) })
        } else {
            Err(Error)
        }
    }

    /// Obtain a reference to this path's bytestring serialization.
    pub fn as_bytes(&self) -> &[u8] {
        self.0.as_ref()
    }

    /// Obtain a component iterator for this path.
    pub fn components(&self) -> Components<'_> {
        Components::new(&self.0)
    }

    /// Is this path the root path?
    pub fn is_root(&self) -> bool {
        self.0.is_empty()
    }

    /// Create a `PathBuf` with `path` joined to `self`.
    ///
    /// Requires the `alloc` feature is enabled.
    #[cfg(feature = "alloc")]
    pub fn join<P>(&self, path: P) -> PathBuf
    where
        P: AsRef<Path>,
    {
        let mut result = PathBuf::new();
        result.extend(self.components());
        result.extend(path.as_ref().components());
        result
    }

    /// Get the parent path for this path
    pub fn parent(&self) -> Option<&Path> {
        let mut tail = None;

        for component in self.components() {
            tail = Some(component)
        }

        tail.map(|t| {
            let tail_len = self.0.len() - t.len() - 1;
            Path::new(&self.0[..tail_len]).unwrap()
        })
    }

    /// Attempt to convert this path to an `/x/y/z` string.
    ///
    /// This will only succeed if the path components are all ASCII.
    ///
    /// Requires the `alloc` feature is enabled.
    #[cfg(feature = "alloc")]
    pub fn stringify(&self) -> Result<String, Error> {
        let mut result = String::new();

        if self.is_root() {
            result.push(DELIMITER);
            return Ok(result);
        }

        for component in self.components() {
            result.push(DELIMITER);
            result.push_str(component.stringify()?.as_ref());
        }

        Ok(result)
    }

    /// Serialize this `Path` as a byte vector
    #[cfg(feature = "alloc")]
    pub fn to_vec(&self) -> Vec<u8> {
        self.0.to_vec()
    }

    /// Internal function for debug printing just the path components
    #[cfg(feature = "alloc")]
    pub(crate) fn debug_components(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(")?;

        if let Ok(s) = self.stringify() {
            s.fmt(f)?;
        } else {
            let component_count = self.components().count();
            for (i, component) in self.components().enumerate() {
                write!(f, "{:?}", component)?;
                if i < component_count - 1 {
                    write!(f, ", ")?;
                }
            }
        }

        write!(f, ")")
    }
}

impl AsRef<Path> for Path {
    fn as_ref(&self) -> &Self {
        self
    }
}

#[cfg(feature = "alloc")]
impl Debug for Path {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "hkd32::Path")?;
        self.debug_components(f)
    }
}

/// Component of a derivation path
#[derive(Copy, Clone, Eq, Hash, PartialEq)]
#[repr(transparent)]
pub struct Component<'a>(&'a [u8]);

// Components are not allowed to be empty
#[allow(clippy::len_without_is_empty)]
impl<'a> Component<'a> {
    /// Create a new component.
    ///
    /// Returns `Error` if the component is empty or is longer than
    /// `MAX_COMPONENT_LENGTH`.
    pub fn new(bytes: &'a [u8]) -> Result<Self, Error> {
        if !bytes.is_empty() && bytes.len() <= MAX_COMPONENT_LENGTH {
            Ok(Component(bytes))
        } else {
            Err(Error)
        }
    }

    /// Borrow the contents of this component as a byte slice.
    pub fn as_bytes(&self) -> &'a [u8] {
        self.0
    }

    /// Get the length of this component in bytes.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Attempt to convert component to an ASCII string.
    ///
    /// Requires the `alloc` feature is enabled.
    #[cfg(feature = "alloc")]
    pub fn stringify(&self) -> Result<String, Error> {
        let s = str::from_utf8(self.as_bytes())
            .map(String::from)
            .map_err(|_| Error)?;

        if s.is_ascii() {
            Ok(s)
        } else {
            Err(Error)
        }
    }

    /// Serialize this component as a length-prefixed bytestring.
    #[cfg(feature = "alloc")]
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut serialized = Vec::with_capacity(1 + self.len());
        serialized.push((self.len() - 1) as u8);
        serialized.extend_from_slice(&self.0);
        serialized
    }
}

impl<'a> AsRef<Component<'a>> for Component<'a> {
    fn as_ref(&self) -> &Component<'a> {
        self
    }
}

#[cfg(feature = "alloc")]
impl<'a> Debug for Component<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "hkd32::Component")?;

        if let Ok(s) = self.stringify() {
            write!(f, "({:?})", s)
        } else {
            write!(f, "({:?})", self.as_bytes())
        }
    }
}

/// Iterator over the components of a path
#[derive(Clone)]
pub struct Components<'a> {
    /// Remaining data in the path
    path: &'a [u8],

    /// Flag set to false if the path is malformed/truncated
    valid: bool,
}

impl<'a> Components<'a> {
    /// Create a new component iterator from the given byte slice
    fn new(path: &'a [u8]) -> Self {
        Self { path, valid: true }
    }

    /// Iterate over the components until the end, checking that the path
    /// is valid. This consumes the path in the process, and is only used
    /// internally by `Path::new` to ensure the path is well-formed.
    fn validate(mut self) -> bool {
        while self.next().is_some() {}
        self.valid
    }
}

impl<'a> Iterator for Components<'a> {
    type Item = Component<'a>;

    fn next(&mut self) -> Option<Component<'a>> {
        // Read the length prefix for the next component
        let component_len = *self.path.first()? as usize + 1;
        self.path = &self.path[1..];

        if self.path.len() < component_len {
            // If the path appears truncated, mark it internally as such
            // This is checked in `Path::new` and an error returned to the user
            self.valid = false;
            return None;
        }

        let (component_bytes, remaining) = self.path.split_at(component_len);
        self.path = remaining;

        if let Ok(component) = Component::new(component_bytes) {
            Some(component)
        } else {
            self.valid = false;
            None
        }
    }
}

#[cfg(all(test, feature = "alloc"))]
mod tests {
    use super::*;

    #[test]
    fn test_root() {
        let root_path = Path::new(&[]).unwrap();
        assert_eq!(root_path.components().count(), 0);
        assert_eq!(root_path.stringify().unwrap(), "/");
        assert_eq!(&format!("{:?}", root_path), "hkd32::Path(\"/\")");
    }
}