hjul/timers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
use mio::{Events, Poll, PollOpt, Ready, Token};
use mio_extras::timer;
use spin::Mutex;
use std::fmt;
use std::mem;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Weak};
use std::thread;
use std::time::Duration;
const TIMER: Token = Token(1);
type State = Weak<TimerInner>;
struct TimerInner {
timer: Arc<Mutex<timer::Timer<State>>>,
pending: AtomicBool,
timeout: Mutex<Option<timer::Timeout>>,
callback: Box<dyn Fn() + Send + Sync>,
}
impl fmt::Debug for TimerInner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Timer {{ pending = {} }} ",
self.pending.load(Ordering::Acquire)
)
}
}
pub struct Runner {
timer: Arc<Mutex<timer::Timer<State>>>,
handle: Option<thread::JoinHandle<()>>,
running: Arc<AtomicBool>,
}
impl fmt::Debug for Runner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Runner {{ running = {} }} ",
self.running.load(Ordering::Acquire)
)
}
}
#[derive(Clone)]
pub struct Timer(Arc<TimerInner>);
impl fmt::Debug for Timer {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
impl Runner {
/// Creates a new Runner, which executes the associated timer callbacks
///
/// # Arguments
///
/// * `tick`: duration of a single tick. This determines the accuracy of the underlaying timer wheel
/// * `slots`: Number of slots in the timer wheel.
/// * `capacity`: Maximum number of timers which can be allocated for the wheel
///
/// # Note
///
/// The longest possible duration of any timer is `tick` * `slots`
///
/// # Example
///
/// ```
/// use hjul::Runner;
/// use std::time::Duration;
///
/// // allows 1024 timers, with duration up to 10s and 100ms accuracy
/// let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// ```
pub fn new(tick: Duration, slots: usize, capacity: usize) -> Runner {
// create timer whell
let builder: timer::Builder = Default::default();
let builder = timer::Builder::tick_duration(builder, tick);
let builder = timer::Builder::num_slots(builder, slots);
let builder = timer::Builder::capacity(builder, capacity);
let timer = timer::Builder::build(builder);
// create Poll
let poll = Poll::new().unwrap();
poll.register(&timer, TIMER, Ready::readable(), PollOpt::level())
.unwrap();
// allow sharing state
let timer = Arc::new(Mutex::new(timer));
let running = Arc::new(AtomicBool::new(true));
// start callback thread
let handle = {
let timer = timer.clone();
let running = running.clone();
thread::spawn(move || {
let mut events = Events::with_capacity(256);
while running.load(Ordering::Acquire) {
poll.poll(&mut events, None).unwrap();
for event in &events {
match event.token() {
TIMER => {
// poll and obtain strong reference to the timer
let timer: Arc<TimerInner> = match timer
.lock()
.poll()
.and_then(|weak: Weak<TimerInner>| weak.upgrade())
{
Some(v) => v,
None => continue,
};
// note: we need to release all locks before executing the
// callback, since the callback might apply operations to the timer.
if timer.pending.swap(false, Ordering::SeqCst) {
(timer.callback)()
}
}
_ => unreachable!(),
}
}
}
})
};
// return runner handle
Runner {
timer,
handle: Some(handle),
running,
}
}
/// Allocate a new (stopped) timer and associate it with the callback
///
/// # Arguments
///
/// * `callback`: Callback to execute whenever the timer fires (possible repeatedly, if reset).
///
/// # Example
///
/// ```
/// # use hjul::Runner;
/// # use std::thread;
/// # use std::time::Duration;
/// # let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// let timer = runner.timer(|| println!("fired"));
///
/// // start the timer
/// timer.reset(Duration::from_millis(100));
///
/// // wait for timer to fire
/// thread::sleep(Duration::from_millis(1000));
/// ```
pub fn timer<F>(&self, callback: F) -> Timer
where
F: 'static + Fn() + Send + Sync,
{
Timer(Arc::new(TimerInner {
callback: Box::new(callback),
pending: AtomicBool::new(false),
timer: self.timer.clone(),
timeout: Mutex::new(None),
}))
}
}
impl Drop for Runner {
fn drop(&mut self) {
// mark the runner as stopped
self.running.store(false, Ordering::SeqCst);
// create an event for mio, causing the callback thread to be scheduled
self.timer
.lock()
.set_timeout(Duration::from_millis(0), Weak::new());
// join with the callback thread
if let Some(handle) = mem::replace(&mut self.handle, None) {
handle.join().unwrap();
}
}
}
impl TimerInner {
fn stop(&self) {
if self.pending.swap(false, Ordering::Acquire) {
if let Some(tm) = self.timeout.lock().take() {
self.timer.lock().cancel_timeout(&tm);
}
}
}
fn fire(&self) {
self.stop();
(self.callback)()
}
}
impl Timer {
/// Stop the timer (preventing execution of the callback in the future)
///
/// # Note
///
/// Another way to stop a timer is to drop every clone of the timer.
///
/// # Example
///
/// ```
/// # use hjul::Runner;
/// # use std::thread;
/// # use std::time::Duration;
/// # let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// let timer = runner.timer(|| assert!(false));
/// timer.reset(Duration::from_millis(200));
/// timer.stop();
///
/// // callback is never executed
/// thread::sleep(Duration::from_millis(500));
/// ```
pub fn stop(&self) {
self.0.stop()
}
/// Restart the timer, regardless of whether the timer is running or not.
/// e.g. repeatably calling .reset(1 sec) will cause the timer to never fire.
///
/// # Arguments
///
/// * `duration`: duration until the callback should execute
///
/// # Example
///
/// ```
/// # use hjul::Runner;
/// # use std::thread;
/// # use std::time::Duration;
/// # let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// let timer = runner.timer(|| assert!(false));
///
/// // the timer never fires
/// let dur = Duration::from_millis(200);
/// for _ in 0..5 {
/// timer.reset(dur);
/// thread::sleep(dur / 2);
/// }
///
/// // timer is dropped and cancelled
/// ```
pub fn reset(&self, duration: Duration) {
let inner = &self.0;
inner.pending.store(true, Ordering::SeqCst);
let mut timeout = inner.timeout.lock();
let mut timer = inner.timer.lock();
let new = timer.set_timeout(duration, Arc::downgrade(&self.0));
if let Some(tm) = mem::replace(&mut *timeout, Some(new)) {
timer.cancel_timeout(&tm);
}
}
/// Start the timer, but only if the timer is not already pending
/// e.g. if repeatably calling .start(1 sec), the timer will fire ~ once every second
///
/// # Arguments
///
/// * `duration`: duration until the callback should execute
///
/// # Returns
///
/// A bool indicating whether the timer was started (true)
/// or already running (false).
///
/// # Example
///
/// ```
/// # use hjul::Runner;
/// # use std::thread;
/// # use std::time::Duration;
/// # let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// let timer = runner.timer(|| println!("fired"));
///
/// // this timer will fire twice
/// let dur = Duration::from_millis(200);
/// for _ in 0..5 {
/// timer.start(dur);
/// thread::sleep(dur / 2);
/// }
///
/// // timer is dropped and cancelled
/// ```
pub fn start(&self, duration: Duration) -> bool {
// optimistic check for pending
let inner = &self.0;
if inner.pending.load(Ordering::Acquire) {
return false;
}
// take lock and set if not pending
let mut timeout = inner.timeout.lock();
let mut timer = inner.timer.lock();
if inner.pending.load(Ordering::Acquire) {
return false;
}
*timeout = Some(timer.set_timeout(duration, Arc::downgrade(&self.0)));
inner.pending.store(true, Ordering::SeqCst);
true
}
/// Manually cause the timer to fire immediately.
/// This cancels any pending timeout (equivalent to calling .stop())
/// before executing the callback.
///
/// # Note
///
/// The callback is run in the calling thread
/// as oppose to being run by the thread in the associated `Runner` instance.
///
/// # Example
///
/// ```
/// # use hjul::Runner;
/// # use std::thread;
/// # use std::time::Duration;
/// # let runner = Runner::new(Duration::from_millis(100), 100, 1024);
/// let timer = runner.timer(|| println!("fired"));
///
/// timer.start(Duration::from_millis(200));
/// timer.fire();
///
/// // timer is fired immediately, not after 200ms.
/// ```
pub fn fire(&self) {
self.0.fire();
}
}
impl Drop for TimerInner {
fn drop(&mut self) {
self.stop()
}
}