1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use crate::internal::unordered_load3;
use crate::internal::{Filled, HashPacket, PACKET_SIZE};
use crate::key::Key;
use crate::traits::HighwayHash;
use crate::v2x64u::V2x64U;
use core::arch::x86_64::*;

/// SSE empowered implementation that will only work on `x86_64` with sse 4.1 enabled at the CPU
/// level.
#[derive(Debug, Default, Clone)]
pub struct SseHash {
    key: Key,
    buffer: HashPacket,
    v0L: V2x64U,
    v0H: V2x64U,
    v1L: V2x64U,
    v1H: V2x64U,
    mul0L: V2x64U,
    mul0H: V2x64U,
    mul1L: V2x64U,
    mul1H: V2x64U,
}

impl HighwayHash for SseHash {
    fn append(&mut self, data: &[u8]) {
        unsafe {
            self.append(data);
        }
    }

    fn finalize64(mut self) -> u64 {
        unsafe { Self::finalize64(&mut self) }
    }

    fn finalize128(mut self) -> [u64; 2] {
        unsafe { Self::finalize128(&mut self) }
    }

    fn finalize256(mut self) -> [u64; 4] {
        unsafe { Self::finalize256(&mut self) }
    }
}

impl SseHash {
    /// Creates a new `SseHash` while circumventing the runtime check for sse4.1.
    ///
    /// # Safety
    ///
    /// If called on a machine without sse4.1, a segfault will occur. Only use if you have
    /// control over the deployment environment and have either benchmarked that the runtime
    /// check is significant or are unable to check for sse4.1 capabilities
    pub unsafe fn force_new(key: Key) -> Self {
        let mut h = SseHash {
            key,
            ..Default::default()
        };
        h.reset();
        h
    }

    /// Create a new `SseHash` if the sse4.1 feature is detected
    pub fn new(key: Key) -> Option<Self> {
        #[cfg(feature = "std")]
        {
            if is_x86_feature_detected!("sse4.1") {
                Some(unsafe { Self::force_new(key) })
            } else {
                None
            }
        }

        #[cfg(not(feature = "std"))]
        {
            let _key = key;
            None
        }
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn reset(&mut self) {
        let init0L = V2x64U::new(0xa409_3822_299f_31d0, 0xdbe6_d5d5_fe4c_ce2f);
        let init0H = V2x64U::new(0x243f_6a88_85a3_08d3, 0x1319_8a2e_0370_7344);
        let init1L = V2x64U::new(0xc0ac_f169_b5f1_8a8c, 0x3bd3_9e10_cb0e_f593);
        let init1H = V2x64U::new(0x4528_21e6_38d0_1377, 0xbe54_66cf_34e9_0c6c);
        let keyL = V2x64U::from(_mm_loadu_si128(self.key.0.as_ptr() as *const __m128i));
        let keyH = V2x64U::from(_mm_loadu_si128(
            self.key.0.as_ptr().offset(2) as *const __m128i
        ));
        self.v0L = keyL ^ init0L;
        self.v0H = keyH ^ init0H;
        self.v1L = keyL.rotate_by_32() ^ init1L;
        self.v1H = keyH.rotate_by_32() ^ init1H;
        self.mul0L = init0L;
        self.mul0H = init0H;
        self.mul1L = init1L;
        self.mul1H = init1H;
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn zipper_merge(v: &V2x64U) -> V2x64U {
        v.shuffle(&V2x64U::new(0x0708_0609_0D0A_040B, 0x000F_010E_0502_0C03))
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn update(&mut self, packetH: V2x64U, packetL: V2x64U) {
        self.v1L += packetL;
        self.v1H += packetH;
        self.v1L += self.mul0L;
        self.v1H += self.mul0H;
        self.mul0L ^= V2x64U(_mm_mul_epu32(self.v1L.0, self.v0L.rotate_by_32().0));
        self.mul0H ^= V2x64U(_mm_mul_epu32(self.v1H.0, _mm_srli_epi64(self.v0H.0, 32)));
        self.v0L += self.mul1L;
        self.v0H += self.mul1H;
        self.mul1L ^= V2x64U(_mm_mul_epu32(self.v0L.0, self.v1L.rotate_by_32().0));
        self.mul1H ^= V2x64U(_mm_mul_epu32(self.v0H.0, _mm_srli_epi64(self.v1H.0, 32)));
        self.v0L += SseHash::zipper_merge(&self.v1L);
        self.v0H += SseHash::zipper_merge(&self.v1H);
        self.v1L += SseHash::zipper_merge(&self.v0L);
        self.v1H += SseHash::zipper_merge(&self.v0H);
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn permute_and_update(&mut self) {
        let low = self.v0L.rotate_by_32();
        let high = self.v0H.rotate_by_32();
        self.update(low, high);
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn finalize64(&mut self) -> u64 {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..4 {
            self.permute_and_update();
        }

        let sum0 = self.v0L + self.mul0L;
        let sum1 = self.v1L + self.mul1L;
        let hash = sum0 + sum1;
        let mut result: u64 = 0;
        _mm_storel_epi64((&mut result as *mut u64) as *mut __m128i, hash.0);
        result
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn finalize128(&mut self) -> [u64; 2] {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..6 {
            self.permute_and_update();
        }

        let sum0 = self.v0L + self.mul0L;
        let sum1 = self.v1H + self.mul1H;
        let hash = sum0 + sum1;
        let mut result: [u64; 2] = [0; 2];
        _mm_storeu_si128(result.as_mut_ptr() as *mut __m128i, hash.0);
        result
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn finalize256(&mut self) -> [u64; 4] {
        if !self.buffer.is_empty() {
            self.update_remainder();
        }

        for _i in 0..10 {
            self.permute_and_update();
        }

        let sum0L = self.v0L + self.mul0L;
        let sum1L = self.v1L + self.mul1L;
        let sum0H = self.v0H + self.mul0H;
        let sum1H = self.v1H + self.mul1H;
        let hashL = SseHash::modular_reduction(&sum1L, &sum0L);
        let hashH = SseHash::modular_reduction(&sum1H, &sum0H);
        let mut result: [u64; 4] = [0; 4];
        _mm_storeu_si128(result.as_mut_ptr() as *mut __m128i, hashL.0);
        _mm_storeu_si128(result.as_mut_ptr().offset(2) as *mut __m128i, hashH.0);
        result
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn modular_reduction(x: &V2x64U, init: &V2x64U) -> V2x64U {
        let zero = V2x64U::default();
        let sign_bit128 = V2x64U::from(_mm_insert_epi32(zero.0, 0x8000_0000_u32 as i32, 3));
        let top_bits2 = V2x64U::from(_mm_srli_epi64(x.0, 62));
        let shifted1_unmasked = *x + *x;
        let top_bits1 = V2x64U::from(_mm_srli_epi64(x.0, 63));
        let shifted2 = shifted1_unmasked + shifted1_unmasked;
        let new_low_bits2 = V2x64U::from(_mm_slli_si128(top_bits2.0, 8));
        let shifted1 = shifted1_unmasked.and_not(&sign_bit128);
        let new_low_bits1 = V2x64U::from(_mm_slli_si128(top_bits1.0, 8));
        *init ^ shifted2 ^ new_low_bits2 ^ shifted1 ^ new_low_bits1
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn load_multiple_of_four(bytes: &[u8], size: u64) -> V2x64U {
        let mut data = &bytes[..];
        let mut mask4 = V2x64U::from(_mm_cvtsi64_si128(0xFFFF_FFFF));
        let mut ret = if size & 8 != 0 {
            mask4 = V2x64U::from(_mm_slli_si128(mask4.0, 8));
            data = &bytes[8..];
            V2x64U::from(_mm_loadl_epi64(bytes.as_ptr() as *const __m128i))
        } else {
            V2x64U::new(0, 0)
        };

        if size & 4 != 0 {
            let last4 = i32::from_le_bytes([data[0], data[1], data[2], data[3]]);
            let word2 = _mm_cvtsi32_si128(last4);
            let broadcast = V2x64U::from(_mm_shuffle_epi32(word2, 0));
            ret |= broadcast & mask4;
        }

        ret
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn remainder(bytes: &[u8]) -> (V2x64U, V2x64U) {
        let size_mod32 = bytes.len();
        let size_mod4 = size_mod32 & 3;
        if size_mod32 & 16 != 0 {
            let packetL = V2x64U::from(_mm_loadu_si128(bytes.as_ptr() as *const __m128i));
            let packett = SseHash::load_multiple_of_four(&bytes[16..], size_mod32 as u64);
            let remainder = &bytes[(size_mod32 & !3) + size_mod4 - 4..];
            let last4 =
                i32::from_le_bytes([remainder[0], remainder[1], remainder[2], remainder[3]]);
            let packetH = V2x64U::from(_mm_insert_epi32(packett.0, last4, 3));
            (packetH, packetL)
        } else {
            let remainder = &bytes[size_mod32 & !3..];
            let packetL = SseHash::load_multiple_of_four(bytes, size_mod32 as u64);
            let last4 = unordered_load3(remainder);
            let packetH = V2x64U::from(_mm_cvtsi64_si128(last4 as i64));
            (packetH, packetL)
        }
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn update_remainder(&mut self) {
        let size = self.buffer.len();
        let vsize_mod32 = _mm_set1_epi32(size as i32);
        self.v0L += V2x64U::from(vsize_mod32);
        self.v0H += V2x64U::from(vsize_mod32);
        self.rotate_32_by(size as i64);
        let (packetH, packetL) = SseHash::remainder(self.buffer.as_slice());
        self.update(packetH, packetL);
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn rotate_32_by(&mut self, count: i64) {
        let vL = &mut self.v1L;
        let vH = &mut self.v1H;
        let count_left = _mm_cvtsi64_si128(count);
        let count_right = _mm_cvtsi64_si128(32 - count);
        let shifted_leftL = V2x64U::from(_mm_sll_epi32(vL.0, count_left));
        let shifted_leftH = V2x64U::from(_mm_sll_epi32(vH.0, count_left));
        let shifted_rightL = V2x64U::from(_mm_srl_epi32(vL.0, count_right));
        let shifted_rightH = V2x64U::from(_mm_srl_epi32(vH.0, count_right));
        *vL = shifted_leftL | shifted_rightL;
        *vH = shifted_leftH | shifted_rightH;
    }

    #[inline]
    #[target_feature(enable = "sse4.1")]
    unsafe fn data_to_lanes(packet: &[u8]) -> (V2x64U, V2x64U) {
        let packetL = V2x64U::from(_mm_loadu_si128(packet.as_ptr() as *const __m128i));
        let packetH = V2x64U::from(_mm_loadu_si128(packet.as_ptr().offset(16) as *const __m128i));

        (packetH, packetL)
    }

    #[target_feature(enable = "sse4.1")]
    unsafe fn append(&mut self, data: &[u8]) {
        match self.buffer.fill(data) {
            Filled::Consumed => {}
            Filled::Full(new_data) => {
                let (packetH, packetL) = SseHash::data_to_lanes(self.buffer.as_slice());
                self.update(packetH, packetL);

                let mut chunks = new_data.chunks_exact(PACKET_SIZE);
                while let Some(chunk) = chunks.next() {
                    let (packetH, packetL) = SseHash::data_to_lanes(chunk);
                    self.update(packetH, packetL);
                }

                self.buffer.set_to(chunks.remainder());
            }
        }
    }
}

impl_write!(SseHash);
impl_hasher!(SseHash);