1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

use std::ops::{BitAnd, BitOr, BitXor, Not};

use {BitSet, BitSetLike};

/// `BitSetAnd` takes two [`BitSetLike`] items, and merges the masks
/// returning a new virtual set, which represents an intersection of the
/// two original sets.
///
/// [`BitSetLike`]: ../trait.BitSetLike.html
#[derive(Debug)]
pub struct BitSetAnd<A: BitSetLike, B: BitSetLike>(pub A, pub B);

impl<A: BitSetLike, B: BitSetLike> BitSetLike for BitSetAnd<A, B> {
    #[inline]
    fn layer3(&self) -> usize {
        self.0.layer3() & self.1.layer3()
    }
    #[inline]
    fn layer2(&self, i: usize) -> usize {
        self.0.layer2(i) & self.1.layer2(i)
    }
    #[inline]
    fn layer1(&self, i: usize) -> usize {
        self.0.layer1(i) & self.1.layer1(i)
    }
    #[inline]
    fn layer0(&self, i: usize) -> usize {
        self.0.layer0(i) & self.1.layer0(i)
    }
}

/// `BitSetOr` takes two [`BitSetLike`] items, and merges the masks
/// returning a new virtual set, which represents an merged of the
/// two original sets.
///
/// [`BitSetLike`]: ../trait.BitSetLike.html
#[derive(Debug)]
pub struct BitSetOr<A: BitSetLike, B: BitSetLike>(pub A, pub B);

impl<A: BitSetLike, B: BitSetLike> BitSetLike for BitSetOr<A, B> {
    #[inline]
    fn layer3(&self) -> usize {
        self.0.layer3() | self.1.layer3()
    }
    #[inline]
    fn layer2(&self, i: usize) -> usize {
        self.0.layer2(i) | self.1.layer2(i)
    }
    #[inline]
    fn layer1(&self, i: usize) -> usize {
        self.0.layer1(i) | self.1.layer1(i)
    }
    #[inline]
    fn layer0(&self, i: usize) -> usize {
        self.0.layer0(i) | self.1.layer0(i)
    }
}

/// `BitSetNot` takes a [`BitSetLike`] item, and produced an inverted virtual set.
/// Note: the implementation is sub-optimal because layers 1-3 are not active.
///
/// [`BitSetLike`]: ../trait.BitSetLike.html
#[derive(Debug)]
pub struct BitSetNot<A: BitSetLike>(pub A);

impl<A: BitSetLike> BitSetLike for BitSetNot<A> {
    #[inline]
    fn layer3(&self) -> usize {
        !0
    }
    #[inline]
    fn layer2(&self, _: usize) -> usize {
        !0
    }
    #[inline]
    fn layer1(&self, _: usize) -> usize {
        !0
    }
    #[inline]
    fn layer0(&self, i: usize) -> usize {
        !self.0.layer0(i)
    }
}

/// `BitSetXor` takes two [`BitSetLike`] items, and merges the masks
/// returning a new virtual set, which represents an merged of the
/// two original sets.
///
/// [`BitSetLike`]: ../trait.BitSetLike.html
#[derive(Debug)]
pub struct BitSetXor<A: BitSetLike, B: BitSetLike>(pub A, pub B);

impl<A: BitSetLike, B: BitSetLike> BitSetLike for BitSetXor<A, B> {
    #[inline]
    fn layer3(&self) -> usize {
        let xor = BitSetAnd(BitSetOr(&self.0, &self.1), BitSetNot(BitSetAnd(&self.0, &self.1)));
        xor.layer3()
    }
    #[inline]
    fn layer2(&self, id: usize) -> usize {
        let xor = BitSetAnd(BitSetOr(&self.0, &self.1), BitSetNot(BitSetAnd(&self.0, &self.1)));
        xor.layer2(id)
    }
    #[inline]
    fn layer1(&self, id: usize) -> usize {
        let xor = BitSetAnd(BitSetOr(&self.0, &self.1), BitSetNot(BitSetAnd(&self.0, &self.1)));
        xor.layer1(id)
    }
    #[inline]
    fn layer0(&self, id: usize) -> usize {
        let xor = BitSetAnd(BitSetOr(&self.0, &self.1), BitSetNot(BitSetAnd(&self.0, &self.1)));
        xor.layer0(id)
    }
}

macro_rules! operator {
    ( impl < ( $( $lifetime:tt )* ) ( $( $arg:ident ),* ) > for $bitset:ty ) => {
        impl<$( $lifetime, )* $( $arg ),*> Not for $bitset
            where $( $arg: BitSetLike ),*
        {
            type Output = BitSetNot<Self>;
            fn not(self) -> Self::Output {
                BitSetNot(self)
            }
        }

        impl<$( $lifetime, )* $( $arg, )* T> BitAnd<T> for $bitset
            where T: BitSetLike,
                  $( $arg: BitSetLike ),*
        {
            type Output = BitSetAnd<Self, T>;
            fn bitand(self, rhs: T) -> Self::Output {
                BitSetAnd(self, rhs)
            }
        }

        impl<$( $lifetime, )* $( $arg, )* T> BitOr<T> for $bitset
            where T: BitSetLike,
                  $( $arg: BitSetLike ),*
        {
            type Output = BitSetOr<Self, T>;
            fn bitor(self, rhs: T) -> Self::Output {
                BitSetOr(self, rhs)
            }
        }

        impl<$( $lifetime, )* $( $arg, )* T> BitXor<T> for $bitset
            where T: BitSetLike,
                  $( $arg: BitSetLike ),*
        {
            type Output = BitSetXor<Self, T>;
            fn bitxor(self, rhs: T) -> Self::Output {
                BitSetXor(self, rhs)
            }
        }

    }
}

operator!(impl<()()> for BitSet);
operator!(impl<('a)()> for &'a BitSet);
operator!(impl<()(A)> for BitSetNot<A>);
operator!(impl<('a)(A)> for &'a BitSetNot<A>);
operator!(impl<()(A, B)> for BitSetAnd<A, B>);
operator!(impl<('a)(A, B)> for &'a BitSetAnd<A, B>);
operator!(impl<()(A, B)> for BitSetOr<A, B>);
operator!(impl<('a)(A, B)> for &'a BitSetOr<A, B>);
operator!(impl<()(A, B)> for BitSetXor<A, B>);
operator!(impl<('a)(A, B)> for &'a BitSetXor<A, B>);

#[cfg(test)]
mod tests {
    use {Index, BitSet, BitSetLike, BitSetXor};

    #[test]
    fn operators() {
        let mut bitset = BitSet::new();
        bitset.add(1);
        bitset.add(3);
        bitset.add(5);
        bitset.add(15);
        bitset.add(200);
        bitset.add(50001);

        let mut other = BitSet::new();
        other.add(1);
        other.add(3);
        other.add(50000);
        other.add(50001);

        {
            let not = &bitset & !&bitset;
            assert_eq!(not.iter().count(), 0);
        }

        {
            let either = &bitset | &other;
            let collected = either.iter().collect::<Vec<Index>>();
            assert_eq!(collected, vec![1, 3, 5, 15, 200, 50000, 50001]);

            let either_sanity = bitset.clone() | other.clone();
            assert_eq!(collected, either_sanity.iter().collect::<Vec<Index>>());
        }

        {
            let same = &bitset & &other;
            let collected = same.iter().collect::<Vec<Index>>();
            assert_eq!(collected, vec![1, 3, 50001]);

            let same_sanity = bitset.clone() & other.clone();
            assert_eq!(collected, same_sanity.iter().collect::<Vec<Index>>());
        }

        {
            let exclusive = &bitset ^ &other;
            let collected = exclusive.iter().collect::<Vec<Index>>();
            assert_eq!(collected, vec![5, 15, 200, 50000]);

            let exclusive_sanity = bitset.clone() ^ other.clone();
            assert_eq!(collected, exclusive_sanity.iter().collect::<Vec<Index>>());
        }
    }

    #[test]
    fn xor() {
        // 0011
        let mut bitset = BitSet::new();
        bitset.add(2);
        bitset.add(3);
        bitset.add(50000);

        // 0101
        let mut other = BitSet::new();
        other.add(1);
        other.add(3);
        other.add(50000);
        other.add(50001);

        {
            // 0110
            let xor = BitSetXor(&bitset, &other);
            let collected = xor.iter().collect::<Vec<Index>>();
            assert_eq!(collected, vec![1, 2, 50001]);
        }
    }
}