1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
// ancestors.rs
//
// Copyright 2018 Georges Racinet <gracinet@anybox.fr>
//
// This software may be used and distributed according to the terms of the
// GNU General Public License version 2 or any later version.

//! Rust versions of generic DAG ancestors algorithms for Mercurial

use super::{Graph, GraphError, Revision, NULL_REVISION};
use std::cmp::max;
use std::collections::{BinaryHeap, HashSet};
use crate::dagops;

/// Iterator over the ancestors of a given list of revisions
/// This is a generic type, defined and implemented for any Graph, so that
/// it's easy to
///
/// - unit test in pure Rust
/// - bind to main Mercurial code, potentially in several ways and have these
///   bindings evolve over time
pub struct AncestorsIterator<G: Graph> {
    graph: G,
    visit: BinaryHeap<Revision>,
    seen: HashSet<Revision>,
    stoprev: Revision,
}

/// Lazy ancestors set, backed by AncestorsIterator
pub struct LazyAncestors<G: Graph + Clone> {
    graph: G,
    containsiter: AncestorsIterator<G>,
    initrevs: Vec<Revision>,
    stoprev: Revision,
    inclusive: bool,
}

pub struct MissingAncestors<G: Graph> {
    graph: G,
    bases: HashSet<Revision>,
    max_base: Revision,
}

impl<G: Graph> AncestorsIterator<G> {
    /// Constructor.
    ///
    /// if `inclusive` is true, then the init revisions are emitted in
    /// particular, otherwise iteration starts from their parents.
    pub fn new(
        graph: G,
        initrevs: impl IntoIterator<Item = Revision>,
        stoprev: Revision,
        inclusive: bool,
    ) -> Result<Self, GraphError> {
        let filtered_initrevs = initrevs.into_iter().filter(|&r| r >= stoprev);
        if inclusive {
            let visit: BinaryHeap<Revision> = filtered_initrevs.collect();
            let seen = visit.iter().map(|&x| x).collect();
            return Ok(AncestorsIterator {
                visit: visit,
                seen: seen,
                stoprev: stoprev,
                graph: graph,
            });
        }
        let mut this = AncestorsIterator {
            visit: BinaryHeap::new(),
            seen: HashSet::new(),
            stoprev: stoprev,
            graph: graph,
        };
        this.seen.insert(NULL_REVISION);
        for rev in filtered_initrevs {
            for parent in this.graph.parents(rev)?.iter().cloned() {
                this.conditionally_push_rev(parent);
            }
        }
        Ok(this)
    }

    #[inline]
    fn conditionally_push_rev(&mut self, rev: Revision) {
        if self.stoprev <= rev && self.seen.insert(rev) {
            self.visit.push(rev);
        }
    }

    /// Consumes partially the iterator to tell if the given target
    /// revision
    /// is in the ancestors it emits.
    /// This is meant for iterators actually dedicated to that kind of
    /// purpose
    pub fn contains(&mut self, target: Revision) -> Result<bool, GraphError> {
        if self.seen.contains(&target) && target != NULL_REVISION {
            return Ok(true);
        }
        for item in self {
            let rev = item?;
            if rev == target {
                return Ok(true);
            }
            if rev < target {
                return Ok(false);
            }
        }
        Ok(false)
    }

    pub fn peek(&self) -> Option<Revision> {
        self.visit.peek().map(|&r| r)
    }

    /// Tell if the iterator is about an empty set
    ///
    /// The result does not depend whether the iterator has been consumed
    /// or not.
    /// This is mostly meant for iterators backing a lazy ancestors set
    pub fn is_empty(&self) -> bool {
        if self.visit.len() > 0 {
            return false;
        }
        if self.seen.len() > 1 {
            return false;
        }
        // at this point, the seen set is at most a singleton.
        // If not `self.inclusive`, it's still possible that it has only
        // the null revision
        self.seen.is_empty() || self.seen.contains(&NULL_REVISION)
    }
}

/// Main implementation for the iterator
///
/// The algorithm is the same as in `_lazyancestorsiter()` from `ancestors.py`
/// with a few non crucial differences:
///
/// - there's no filtering of invalid parent revisions. Actually, it should be
///   consistent and more efficient to filter them from the end caller.
/// - we don't have the optimization for adjacent revisions (i.e., the case
///   where `p1 == rev - 1`), because it amounts to update the first element of
///   the heap without sifting, which Rust's BinaryHeap doesn't let us do.
/// - we save a few pushes by comparing with `stoprev` before pushing
impl<G: Graph> Iterator for AncestorsIterator<G> {
    type Item = Result<Revision, GraphError>;

    fn next(&mut self) -> Option<Self::Item> {
        let current = match self.visit.peek() {
            None => {
                return None;
            }
            Some(c) => *c,
        };
        let [p1, p2] = match self.graph.parents(current) {
            Ok(ps) => ps,
            Err(e) => return Some(Err(e)),
        };
        if p1 < self.stoprev || !self.seen.insert(p1) {
            self.visit.pop();
        } else {
            *(self.visit.peek_mut().unwrap()) = p1;
        };

        self.conditionally_push_rev(p2);
        Some(Ok(current))
    }
}

impl<G: Graph + Clone> LazyAncestors<G> {
    pub fn new(
        graph: G,
        initrevs: impl IntoIterator<Item = Revision>,
        stoprev: Revision,
        inclusive: bool,
    ) -> Result<Self, GraphError> {
        let v: Vec<Revision> = initrevs.into_iter().collect();
        Ok(LazyAncestors {
            graph: graph.clone(),
            containsiter: AncestorsIterator::new(
                graph,
                v.iter().cloned(),
                stoprev,
                inclusive,
            )?,
            initrevs: v,
            stoprev: stoprev,
            inclusive: inclusive,
        })
    }

    pub fn contains(&mut self, rev: Revision) -> Result<bool, GraphError> {
        self.containsiter.contains(rev)
    }

    pub fn is_empty(&self) -> bool {
        self.containsiter.is_empty()
    }

    pub fn iter(&self) -> AncestorsIterator<G> {
        // the arguments being the same as for self.containsiter, we know
        // for sure that AncestorsIterator constructor can't fail
        AncestorsIterator::new(
            self.graph.clone(),
            self.initrevs.iter().cloned(),
            self.stoprev,
            self.inclusive,
        )
        .unwrap()
    }
}

impl<G: Graph> MissingAncestors<G> {
    pub fn new(graph: G, bases: impl IntoIterator<Item = Revision>) -> Self {
        let mut created = MissingAncestors {
            graph: graph,
            bases: HashSet::new(),
            max_base: NULL_REVISION,
        };
        created.add_bases(bases);
        created
    }

    pub fn has_bases(&self) -> bool {
        !self.bases.is_empty()
    }

    /// Return a reference to current bases.
    ///
    /// This is useful in unit tests, but also setdiscovery.py does
    /// read the bases attribute of a ancestor.missingancestors instance.
    pub fn get_bases<'a>(&'a self) -> &'a HashSet<Revision> {
        &self.bases
    }

    /// Computes the relative heads of current bases.
    ///
    /// The object is still usable after this.
    pub fn bases_heads(&self) -> Result<HashSet<Revision>, GraphError> {
        dagops::heads(&self.graph, self.bases.iter())
    }

    /// Consumes the object and returns the relative heads of its bases.
    pub fn into_bases_heads(
        mut self,
    ) -> Result<HashSet<Revision>, GraphError> {
        dagops::retain_heads(&self.graph, &mut self.bases)?;
        Ok(self.bases)
    }

    /// Add some revisions to `self.bases`
    ///
    /// Takes care of keeping `self.max_base` up to date.
    pub fn add_bases(
        &mut self,
        new_bases: impl IntoIterator<Item = Revision>,
    ) {
        let mut max_base = self.max_base;
        self.bases.extend(
            new_bases
                .into_iter()
                .filter(|&rev| rev != NULL_REVISION)
                .map(|r| {
                    if r > max_base {
                        max_base = r;
                    }
                    r
                }),
        );
        self.max_base = max_base;
    }

    /// Remove all ancestors of self.bases from the revs set (in place)
    pub fn remove_ancestors_from(
        &mut self,
        revs: &mut HashSet<Revision>,
    ) -> Result<(), GraphError> {
        revs.retain(|r| !self.bases.contains(r));
        // the null revision is always an ancestor. Logically speaking
        // it's debatable in case bases is empty, but the Python
        // implementation always adds NULL_REVISION to bases, making it
        // unconditionnally true.
        revs.remove(&NULL_REVISION);
        if revs.is_empty() {
            return Ok(());
        }
        // anything in revs > start is definitely not an ancestor of bases
        // revs <= start need to be investigated
        if self.max_base == NULL_REVISION {
            return Ok(());
        }

        // whatever happens, we'll keep at least keepcount of them
        // knowing this gives us a earlier stop condition than
        // going all the way to the root
        let keepcount = revs.iter().filter(|r| **r > self.max_base).count();

        let mut curr = self.max_base;
        while curr != NULL_REVISION && revs.len() > keepcount {
            if self.bases.contains(&curr) {
                revs.remove(&curr);
                self.add_parents(curr)?;
            }
            curr -= 1;
        }
        Ok(())
    }

    /// Add the parents of `rev` to `self.bases`
    ///
    /// This has no effect on `self.max_base`
    #[inline]
    fn add_parents(&mut self, rev: Revision) -> Result<(), GraphError> {
        if rev == NULL_REVISION {
            return Ok(());
        }
        for p in self.graph.parents(rev)?.iter().cloned() {
            // No need to bother the set with inserting NULL_REVISION over and
            // over
            if p != NULL_REVISION {
                self.bases.insert(p);
            }
        }
        Ok(())
    }

    /// Return all the ancestors of revs that are not ancestors of self.bases
    ///
    /// This may include elements from revs.
    ///
    /// Equivalent to the revset (::revs - ::self.bases). Revs are returned in
    /// revision number order, which is a topological order.
    pub fn missing_ancestors(
        &mut self,
        revs: impl IntoIterator<Item = Revision>,
    ) -> Result<Vec<Revision>, GraphError> {
        // just for convenience and comparison with Python version
        let bases_visit = &mut self.bases;
        let mut revs: HashSet<Revision> = revs
            .into_iter()
            .filter(|r| !bases_visit.contains(r))
            .collect();
        let revs_visit = &mut revs;
        let mut both_visit: HashSet<Revision> =
            revs_visit.intersection(&bases_visit).cloned().collect();
        if revs_visit.is_empty() {
            return Ok(Vec::new());
        }
        let max_revs = revs_visit.iter().cloned().max().unwrap();
        let start = max(self.max_base, max_revs);

        // TODO heuristics for with_capacity()?
        let mut missing: Vec<Revision> = Vec::new();
        for curr in (0..=start).rev() {
            if revs_visit.is_empty() {
                break;
            }
            if both_visit.remove(&curr) {
                // curr's parents might have made it into revs_visit through
                // another path
                for p in self.graph.parents(curr)?.iter().cloned() {
                    if p == NULL_REVISION {
                        continue;
                    }
                    revs_visit.remove(&p);
                    bases_visit.insert(p);
                    both_visit.insert(p);
                }
            } else if revs_visit.remove(&curr) {
                missing.push(curr);
                for p in self.graph.parents(curr)?.iter().cloned() {
                    if p == NULL_REVISION {
                        continue;
                    }
                    if bases_visit.contains(&p) {
                        // p is already known to be an ancestor of revs_visit
                        revs_visit.remove(&p);
                        both_visit.insert(p);
                    } else if both_visit.contains(&p) {
                        // p should have been in bases_visit
                        revs_visit.remove(&p);
                        bases_visit.insert(p);
                    } else {
                        // visit later
                        revs_visit.insert(p);
                    }
                }
            } else if bases_visit.contains(&curr) {
                for p in self.graph.parents(curr)?.iter().cloned() {
                    if p == NULL_REVISION {
                        continue;
                    }
                    if revs_visit.remove(&p) || both_visit.contains(&p) {
                        // p is an ancestor of bases_visit, and is implicitly
                        // in revs_visit, which means p is ::revs & ::bases.
                        bases_visit.insert(p);
                        both_visit.insert(p);
                    } else {
                        bases_visit.insert(p);
                    }
                }
            }
        }
        missing.reverse();
        Ok(missing)
    }
}

#[cfg(test)]
mod tests {

    use super::*;
    use crate::testing::{SampleGraph, VecGraph};
    use std::iter::FromIterator;

    fn list_ancestors<G: Graph>(
        graph: G,
        initrevs: Vec<Revision>,
        stoprev: Revision,
        inclusive: bool,
    ) -> Vec<Revision> {
        AncestorsIterator::new(graph, initrevs, stoprev, inclusive)
            .unwrap()
            .map(|res| res.unwrap())
            .collect()
    }

    #[test]
    /// Same tests as test-ancestor.py, without membership
    /// (see also test-ancestor.py.out)
    fn test_list_ancestor() {
        assert_eq!(list_ancestors(SampleGraph, vec![], 0, false), vec![]);
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 0, false),
            vec![8, 7, 4, 3, 2, 1, 0]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![1, 3], 0, false),
            vec![1, 0]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 0, true),
            vec![13, 11, 8, 7, 4, 3, 2, 1, 0]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 6, false),
            vec![8, 7]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 6, true),
            vec![13, 11, 8, 7]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 11, true),
            vec![13, 11]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![11, 13], 12, true),
            vec![13]
        );
        assert_eq!(
            list_ancestors(SampleGraph, vec![10, 1], 0, true),
            vec![10, 5, 4, 2, 1, 0]
        );
    }

    #[test]
    /// Corner case that's not directly in test-ancestors.py, but
    /// that happens quite often, as demonstrated by running the whole
    /// suite.
    /// For instance, run tests/test-obsolete-checkheads.t
    fn test_nullrev_input() {
        let mut iter =
            AncestorsIterator::new(SampleGraph, vec![-1], 0, false).unwrap();
        assert_eq!(iter.next(), None)
    }

    #[test]
    fn test_contains() {
        let mut lazy =
            AncestorsIterator::new(SampleGraph, vec![10, 1], 0, true).unwrap();
        assert!(lazy.contains(1).unwrap());
        assert!(!lazy.contains(3).unwrap());

        let mut lazy =
            AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
        assert!(!lazy.contains(NULL_REVISION).unwrap());
    }

    #[test]
    fn test_peek() {
        let mut iter =
            AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
        // peek() gives us the next value
        assert_eq!(iter.peek(), Some(10));
        // but it's not been consumed
        assert_eq!(iter.next(), Some(Ok(10)));
        // and iteration resumes normally
        assert_eq!(iter.next(), Some(Ok(5)));

        // let's drain the iterator to test peek() at the end
        while iter.next().is_some() {}
        assert_eq!(iter.peek(), None);
    }

    #[test]
    fn test_empty() {
        let mut iter =
            AncestorsIterator::new(SampleGraph, vec![10], 0, true).unwrap();
        assert!(!iter.is_empty());
        while iter.next().is_some() {}
        assert!(!iter.is_empty());

        let iter =
            AncestorsIterator::new(SampleGraph, vec![], 0, true).unwrap();
        assert!(iter.is_empty());

        // case where iter.seen == {NULL_REVISION}
        let iter =
            AncestorsIterator::new(SampleGraph, vec![0], 0, false).unwrap();
        assert!(iter.is_empty());
    }

    /// A corrupted Graph, supporting error handling tests
    #[derive(Clone, Debug)]
    struct Corrupted;

    impl Graph for Corrupted {
        fn parents(&self, rev: Revision) -> Result<[Revision; 2], GraphError> {
            match rev {
                1 => Ok([0, -1]),
                r => Err(GraphError::ParentOutOfRange(r)),
            }
        }
    }

    #[test]
    fn test_initrev_out_of_range() {
        // inclusive=false looks up initrev's parents right away
        match AncestorsIterator::new(SampleGraph, vec![25], 0, false) {
            Ok(_) => panic!("Should have been ParentOutOfRange"),
            Err(e) => assert_eq!(e, GraphError::ParentOutOfRange(25)),
        }
    }

    #[test]
    fn test_next_out_of_range() {
        // inclusive=false looks up initrev's parents right away
        let mut iter =
            AncestorsIterator::new(Corrupted, vec![1], 0, false).unwrap();
        assert_eq!(iter.next(), Some(Err(GraphError::ParentOutOfRange(0))));
    }

    #[test]
    fn test_lazy_iter_contains() {
        let mut lazy =
            LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap();

        let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
        // compare with iterator tests on the same initial revisions
        assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);

        // contains() results are correct, unaffected by the fact that
        // we consumed entirely an iterator out of lazy
        assert_eq!(lazy.contains(2), Ok(true));
        assert_eq!(lazy.contains(9), Ok(false));
    }

    #[test]
    fn test_lazy_contains_iter() {
        let mut lazy =
            LazyAncestors::new(SampleGraph, vec![11, 13], 0, false).unwrap(); // reminder: [8, 7, 4, 3, 2, 1, 0]

        assert_eq!(lazy.contains(2), Ok(true));
        assert_eq!(lazy.contains(6), Ok(false));

        // after consumption of 2 by the inner iterator, results stay
        // consistent
        assert_eq!(lazy.contains(2), Ok(true));
        assert_eq!(lazy.contains(5), Ok(false));

        // iter() still gives us a fresh iterator
        let revs: Vec<Revision> = lazy.iter().map(|r| r.unwrap()).collect();
        assert_eq!(revs, vec![8, 7, 4, 3, 2, 1, 0]);
    }

    #[test]
    /// Test constructor, add/get bases and heads
    fn test_missing_bases() -> Result<(), GraphError> {
        let mut missing_ancestors =
            MissingAncestors::new(SampleGraph, [5, 3, 1, 3].iter().cloned());
        let mut as_vec: Vec<Revision> =
            missing_ancestors.get_bases().iter().cloned().collect();
        as_vec.sort();
        assert_eq!(as_vec, [1, 3, 5]);
        assert_eq!(missing_ancestors.max_base, 5);

        missing_ancestors.add_bases([3, 7, 8].iter().cloned());
        as_vec = missing_ancestors.get_bases().iter().cloned().collect();
        as_vec.sort();
        assert_eq!(as_vec, [1, 3, 5, 7, 8]);
        assert_eq!(missing_ancestors.max_base, 8);

        as_vec = missing_ancestors.bases_heads()?.iter().cloned().collect();
        as_vec.sort();
        assert_eq!(as_vec, [3, 5, 7, 8]);
        Ok(())
    }

    fn assert_missing_remove(
        bases: &[Revision],
        revs: &[Revision],
        expected: &[Revision],
    ) {
        let mut missing_ancestors =
            MissingAncestors::new(SampleGraph, bases.iter().cloned());
        let mut revset: HashSet<Revision> = revs.iter().cloned().collect();
        missing_ancestors
            .remove_ancestors_from(&mut revset)
            .unwrap();
        let mut as_vec: Vec<Revision> = revset.into_iter().collect();
        as_vec.sort();
        assert_eq!(as_vec.as_slice(), expected);
    }

    #[test]
    fn test_missing_remove() {
        assert_missing_remove(
            &[1, 2, 3, 4, 7],
            Vec::from_iter(1..10).as_slice(),
            &[5, 6, 8, 9],
        );
        assert_missing_remove(&[10], &[11, 12, 13, 14], &[11, 12, 13, 14]);
        assert_missing_remove(&[7], &[1, 2, 3, 4, 5], &[3, 5]);
    }

    fn assert_missing_ancestors(
        bases: &[Revision],
        revs: &[Revision],
        expected: &[Revision],
    ) {
        let mut missing_ancestors =
            MissingAncestors::new(SampleGraph, bases.iter().cloned());
        let missing = missing_ancestors
            .missing_ancestors(revs.iter().cloned())
            .unwrap();
        assert_eq!(missing.as_slice(), expected);
    }

    #[test]
    fn test_missing_ancestors() {
        // examples taken from test-ancestors.py by having it run
        // on the same graph (both naive and fast Python algs)
        assert_missing_ancestors(&[10], &[11], &[3, 7, 11]);
        assert_missing_ancestors(&[11], &[10], &[5, 10]);
        assert_missing_ancestors(&[7], &[9, 11], &[3, 6, 9, 11]);
    }

    /// An interesting case found by a random generator similar to
    /// the one in test-ancestor.py. An early version of Rust MissingAncestors
    /// failed this, yet none of the integration tests of the whole suite
    /// catched it.
    #[test]
    fn test_remove_ancestors_from_case1() {
        let graph: VecGraph = vec![
            [NULL_REVISION, NULL_REVISION],
            [0, NULL_REVISION],
            [1, 0],
            [2, 1],
            [3, NULL_REVISION],
            [4, NULL_REVISION],
            [5, 1],
            [2, NULL_REVISION],
            [7, NULL_REVISION],
            [8, NULL_REVISION],
            [9, NULL_REVISION],
            [10, 1],
            [3, NULL_REVISION],
            [12, NULL_REVISION],
            [13, NULL_REVISION],
            [14, NULL_REVISION],
            [4, NULL_REVISION],
            [16, NULL_REVISION],
            [17, NULL_REVISION],
            [18, NULL_REVISION],
            [19, 11],
            [20, NULL_REVISION],
            [21, NULL_REVISION],
            [22, NULL_REVISION],
            [23, NULL_REVISION],
            [2, NULL_REVISION],
            [3, NULL_REVISION],
            [26, 24],
            [27, NULL_REVISION],
            [28, NULL_REVISION],
            [12, NULL_REVISION],
            [1, NULL_REVISION],
            [1, 9],
            [32, NULL_REVISION],
            [33, NULL_REVISION],
            [34, 31],
            [35, NULL_REVISION],
            [36, 26],
            [37, NULL_REVISION],
            [38, NULL_REVISION],
            [39, NULL_REVISION],
            [40, NULL_REVISION],
            [41, NULL_REVISION],
            [42, 26],
            [0, NULL_REVISION],
            [44, NULL_REVISION],
            [45, 4],
            [40, NULL_REVISION],
            [47, NULL_REVISION],
            [36, 0],
            [49, NULL_REVISION],
            [NULL_REVISION, NULL_REVISION],
            [51, NULL_REVISION],
            [52, NULL_REVISION],
            [53, NULL_REVISION],
            [14, NULL_REVISION],
            [55, NULL_REVISION],
            [15, NULL_REVISION],
            [23, NULL_REVISION],
            [58, NULL_REVISION],
            [59, NULL_REVISION],
            [2, NULL_REVISION],
            [61, 59],
            [62, NULL_REVISION],
            [63, NULL_REVISION],
            [NULL_REVISION, NULL_REVISION],
            [65, NULL_REVISION],
            [66, NULL_REVISION],
            [67, NULL_REVISION],
            [68, NULL_REVISION],
            [37, 28],
            [69, 25],
            [71, NULL_REVISION],
            [72, NULL_REVISION],
            [50, 2],
            [74, NULL_REVISION],
            [12, NULL_REVISION],
            [18, NULL_REVISION],
            [77, NULL_REVISION],
            [78, NULL_REVISION],
            [79, NULL_REVISION],
            [43, 33],
            [81, NULL_REVISION],
            [82, NULL_REVISION],
            [83, NULL_REVISION],
            [84, 45],
            [85, NULL_REVISION],
            [86, NULL_REVISION],
            [NULL_REVISION, NULL_REVISION],
            [88, NULL_REVISION],
            [NULL_REVISION, NULL_REVISION],
            [76, 83],
            [44, NULL_REVISION],
            [92, NULL_REVISION],
            [93, NULL_REVISION],
            [9, NULL_REVISION],
            [95, 67],
            [96, NULL_REVISION],
            [97, NULL_REVISION],
            [NULL_REVISION, NULL_REVISION],
        ];
        let problem_rev = 28 as Revision;
        let problem_base = 70 as Revision;
        // making the problem obvious: problem_rev is a parent of problem_base
        assert_eq!(graph.parents(problem_base).unwrap()[1], problem_rev);

        let mut missing_ancestors: MissingAncestors<VecGraph> =
            MissingAncestors::new(
                graph,
                [60, 26, 70, 3, 96, 19, 98, 49, 97, 47, 1, 6]
                    .iter()
                    .cloned(),
            );
        assert!(missing_ancestors.bases.contains(&problem_base));

        let mut revs: HashSet<Revision> =
            [4, 12, 41, 28, 68, 38, 1, 30, 56, 44]
                .iter()
                .cloned()
                .collect();
        missing_ancestors.remove_ancestors_from(&mut revs).unwrap();
        assert!(!revs.contains(&problem_rev));
    }

}