1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
macro_rules! forward_bit_ops_impl {
    ($t:ident => $($t1:ident $f1:ident $t2:ident $f2:ident)+) => { $(
        impl<T: Into<$t>> ::core::ops::$t1<T> for $t {
            type Output = Self;

            #[inline]
            fn $f1(self, other: T) -> Self {
                $t((self.0).$f1(other.into().0))
            }
        }

        impl<T: Into<$t>> ::core::ops::$t2<T> for $t {
            #[inline]
            fn $f2(&mut self, other: T) {
                (self.0).$f2(other.into().0)
            }
        }
    )+ }
}

macro_rules! squares {
    ($($s:ident),+) => {
        $(1 << ::square::Square::$s as u64)|+
    }
}

macro_rules! impl_rand {
    ($s:ty => $($t:ty),+) => { $(
        #[cfg(any(test, feature = "rand"))]
        impl ::rand::Rand for $t {
            #[inline]
            fn rand<R: ::rand::Rng>(rng: &mut R) -> Self {
                rng.gen::<$s>().into()
            }
        }
    )+ }
}

macro_rules! impl_bit_set {
    ($($t:ident $full:expr => $x:ident);+ $(;)*) => { $(
        forward_bit_ops_impl! {
            $t =>
            BitAnd bitand BitAndAssign bitand_assign
            BitXor bitxor BitXorAssign bitxor_assign
            BitOr  bitor  BitOrAssign  bitor_assign
        }

        impl<T: Into<$t>> ::core::ops::Sub<T> for $t {
            type Output = Self;

            #[inline]
            fn sub(self, other: T) -> Self { $t(self.0 & !other.into().0) }
        }

        impl<T: Into<$t>> ::core::ops::SubAssign<T> for $t {
            #[inline]
            fn sub_assign(&mut self, other: T) { self.0 &= !other.into().0 }
        }

        impl ::core::ops::Not for $t {
            type Output = Self;

            #[inline]
            fn not(self) -> Self { $t(!self.0 & $full) }
        }

        impl<A: Into<$t>> ::core::iter::FromIterator<A> for $t {
            #[inline]
            fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> Self {
                iter.into_iter().fold(Self::EMPTY, ::core::ops::BitOr::bitor)
            }
        }

        impl<A: Into<$t>> Extend<A> for $t {
            #[inline]
            fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T) {
                *self |= iter.into_iter().collect::<$t>();
            }
        }

        impl Iterator for $t {
            type Item = $x;

            #[inline]
            fn next(&mut self) -> Option<Self::Item> { self.pop_lsb() }

            #[inline]
            fn size_hint(&self) -> (usize, Option<usize>) {
                let len = self.len();
                (len, Some(len))
            }

            #[inline]
            fn count(self) -> usize { self.len() }

            #[inline]
            fn last(self) -> Option<Self::Item> { self.msb() }
        }

        impl DoubleEndedIterator for $t {
            #[inline]
            fn next_back(&mut self) -> Option<Self::Item> { self.pop_msb() }
        }

        impl ExactSizeIterator for $t {
            #[inline]
            fn len(&self) -> usize { $t::len(self) }
        }

        impl<T: Into<$t>> ::misc::Contained<$t> for T {
            #[inline]
            fn contained_in(self, other: $t) -> bool {
                let this = self.into().0;
                other.0 & this == this
            }
        }

        /// Bit set operations.
        impl $t {
            /// An instance with all bits set to 1.
            pub const FULL: $t = $t($full);

            /// An instance with all bits set to 0.
            pub const EMPTY: $t = $t(0);

            /// Returns whether `self` contains `other`.
            #[inline]
            pub fn contains<T: ::misc::Contained<Self>>(self, other: T) -> bool {
                other.contained_in(self)
            }

            /// Returns whether `self` intersects with `other`.
            #[inline]
            pub fn intersects<T: Into<Self>>(self, other: T) -> bool {
                !(self & other).is_empty()
            }

            /// Returns the number of bits set in `self`.
            #[inline]
            pub fn len(&self) -> usize {
                self.0.count_ones() as usize
            }

            /// Returns whether `self` is empty.
            #[inline]
            pub fn is_empty(&self) -> bool {
                self.0 == 0
            }

            /// Returns whether `self` has multiple bits set.
            #[inline]
            pub fn has_multiple(&self) -> bool {
                self.0 & self.0.wrapping_sub(1) != 0
            }

            /// Converts `self` into its single bit.
            #[inline]
            pub fn into_bit(mut self) -> Option<$x> {
                let bit = self.pop_lsb();
                if self.is_empty() { bit } else { None }
            }

            /// Returns the least significant bit of `self`.
            #[inline]
            pub fn lsb(&self) -> Option<$x> {
                if self.is_empty() { None } else {
                    unsafe { Some(self.lsb_unchecked()) }
                }
            }

            /// Returns the most significant bit of `self`.
            #[inline]
            pub fn msb(&self) -> Option<$x> {
                if self.is_empty() { None } else {
                    unsafe { Some(self.msb_unchecked()) }
                }
            }

            /// Returns the least significant bit of `self` without checking
            /// whether `self` is empty.
            #[inline]
            pub unsafe fn lsb_unchecked(&self) -> $x {
                use uncon::*;
                self.0.trailing_zeros().into_unchecked()
            }

            /// Returns the least significant bit of `self` without checking
            /// whether `self` is empty.
            #[inline]
            pub unsafe fn msb_unchecked(&self) -> $x {
                use core::mem;
                use uncon::*;
                let bits = mem::size_of::<Self>() * 8 - 1;
                (bits ^ self.0.leading_zeros() as usize).into_unchecked()
            }

            /// Removes the least significant bit from `self`.
            #[inline]
            pub fn remove_lsb(&mut self) {
                self.0 &= self.0.wrapping_sub(1);
            }

            /// Removes the most significant bit from `self`.
            #[inline]
            pub fn remove_msb(&mut self) {
                self.pop_msb();
            }

            /// Removes the least significant bit from `self` and returns it.
            #[inline]
            pub fn pop_lsb(&mut self) -> Option<$x> {
                self.lsb().map(|x| {
                    self.remove_lsb();
                    x
                })
            }

            /// Removes the most significant bit from `self` and returns it.
            #[inline]
            pub fn pop_msb(&mut self) -> Option<$x> {
                self.msb().map(|x| {
                    self.0 ^= Self::from(x).0;
                    x
                })
            }
        }
    )+ }
}

// Allows for chaining `|`, `&`, and `^` without calling `T::from`
macro_rules! impl_composition_ops {
    ($u:ty => $($t:ty)+) => { $(
        impl<T: Into<$u>> ::core::ops::BitOr<T> for $t {
            type Output = $u;

            #[inline]
            fn bitor(self, other: T) -> $u {
                other.into().bitor(self)
            }
        }

        impl<T: Into<$u>> ::core::ops::BitAnd<T> for $t {
            type Output = $u;

            #[inline]
            fn bitand(self, other: T) -> $u {
                other.into().bitand(self)
            }
        }

        impl<T: Into<$u>> ::core::ops::BitXor<T> for $t {
            type Output = $u;

            #[inline]
            fn bitxor(self, other: T) -> $u {
                other.into().bitxor(self)
            }
        }
    )+ }
}

macro_rules! define_from_str_error {
    ($t:ty; #[$m:meta] $msg:expr) => {
        #[$m] #[derive(Copy, Clone, Debug, PartialEq, Eq)]
        pub struct FromStrError(());

        impl fmt::Display for FromStrError {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                $msg.fmt(f)
            }
        }

        #[cfg(feature = "std")]
        impl ::std::error::Error for FromStrError {
            #[inline]
            fn description(&self) -> &str { $msg }
        }

        #[cfg(feature = "serde")]
        impl<'de> Deserialize<'de> for $t {
            fn deserialize<D: Deserializer<'de>>(de: D) -> Result<Self, D::Error> {
                <&str>::deserialize(de)?.parse().map_err(|_| {
                    de::Error::custom($msg)
                })
            }
        }
    }
}