1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
use std::ops::{Mul, MulAssign};

use bevy::ecs::component::Component;
use bevy::math::prelude::*;
use bevy::reflect::prelude::*;
use duplicate::duplicate_item;

use crate::utils::NearZero;

/// Component that defines the linear and angular velocity.
///
/// It must be inserted on the same entity of a [`RigidBody`](crate::RigidBody)
///
/// This component can be used for controlling and reading the velocity of the rigid body.
///
/// # Example
///
/// ```
/// # use bevy::prelude::*;
/// # use heron_core::*;
/// # use std::f32::consts::PI;
///
/// fn spawn(mut commands: Commands) {
///     commands.spawn_bundle(todo!("Spawn your sprite/mesh, incl. at least a GlobalTransform"))
///         .insert(CollisionShape::Sphere { radius: 1.0 })
///         .insert(
///             Velocity::from_linear(Vec3::X * 10.0)
///                 .with_angular(AxisAngle::new(Vec3::Z, 0.5 * PI))
///         );
/// }
/// ```
#[derive(Debug, Component, Copy, Clone, PartialEq, Default, Reflect)]
pub struct Velocity {
    /// Linear velocity in units-per-second on each axis
    ///
    /// The unit is your game unit, be it meter, pixel or anything else
    pub linear: Vec3,

    /// Angular velocity in radians-per-second around an axis
    pub angular: AxisAngle,
}

/// Component that defines the linear and angular acceleration.
///
/// It must be inserted on the same entity of a [`RigidBody`](crate::RigidBody)
///
/// The linear part is in "unit" per second squared on each axis, represented as a `Vec3`. (The unit, being your game unit, be it pixel or anything else)
/// The angular part is in radians per second squared around an axis, represented as an [`AxisAngle`]
///
/// # Example
///
/// ```
/// # use bevy::prelude::*;
/// # use heron_core::*;
/// # use std::f32::consts::PI;
///
/// fn spawn(mut commands: Commands) {
///     commands.spawn_bundle(todo!("Spawn your sprite/mesh, incl. at least a GlobalTransform"))
///         .insert(CollisionShape::Sphere { radius: 1.0 })
///         .insert(
///             Acceleration::from_linear(Vec3::X * 1.0)
///                 .with_angular(AxisAngle::new(Vec3::Z, 0.05 * PI))
///         );
/// }
/// ```
#[derive(Debug, Component, Copy, Clone, PartialEq, Default, Reflect)]
pub struct Acceleration {
    /// Linear acceleration in units-per-second-squared on each axis
    pub linear: Vec3,

    /// Angular acceleration in radians-per-second-squared around an axis
    pub angular: AxisAngle,
}

/// Component that defines the linear and angular damping.
///
/// It must be inserted on the same entity of a [`RigidBody`](crate::RigidBody)
///
/// The higher the values, the stronger slow-downs.
/// Default values are 0.0 (no damping at all).
///
/// # Example
///
/// ```
/// # use bevy::prelude::*;
/// # use heron_core::*;
///
/// fn spawn(mut commands: Commands) {
///     commands.spawn_bundle(todo!("Spawn your sprite/mesh, incl. at least a GlobalTransform"))
///         .insert(CollisionShape::Sphere { radius: 1.0 })
///         .insert(
///             Damping::from_linear(0.5)
///                 .with_angular(0.2)
///         );
/// }
/// ```
#[derive(Debug, Copy, Clone, PartialEq, Default, Reflect, Component)]
pub struct Damping {
    /// Linear damping coefficient
    pub linear: f32,

    /// Angular damping coefficient
    pub angular: f32,
}

/// An [axis-angle] representation
///
/// [axis-angle]: https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation
#[derive(Debug, Copy, Clone, PartialEq, Default, Reflect)]
pub struct AxisAngle(Vec3);

impl Velocity {
    /// Returns a linear velocity from a vector
    #[must_use]
    pub fn from_linear(linear: Vec3) -> Self {
        Self {
            linear,
            angular: AxisAngle::default(),
        }
    }

    /// Returns an angular velocity from a vector
    #[must_use]
    pub fn from_angular(angular: AxisAngle) -> Self {
        Self {
            angular,
            linear: Vec3::ZERO,
        }
    }

    /// Returns a new version with the given linear velocity
    #[must_use]
    pub fn with_linear(mut self, linear: Vec3) -> Self {
        self.linear = linear;
        self
    }

    /// Returns a new version with the given angular velocity
    #[must_use]
    pub fn with_angular(mut self, angular: AxisAngle) -> Self {
        self.angular = angular;
        self
    }
}

impl Acceleration {
    /// Returns a linear acceleration from a vector
    #[must_use]
    pub fn from_linear(linear: Vec3) -> Self {
        Self {
            linear,
            angular: AxisAngle::default(),
        }
    }

    /// Returns an angular acceleration from a vector
    #[must_use]
    pub fn from_angular(angular: AxisAngle) -> Self {
        Self {
            angular,
            linear: Vec3::ZERO,
        }
    }

    /// Returns a new version with the given linear acceleration
    #[must_use]
    pub fn with_linear(mut self, linear: Vec3) -> Self {
        self.linear = linear;
        self
    }

    /// Returns a new version with the given angular acceleration
    #[must_use]
    pub fn with_angular(mut self, angular: AxisAngle) -> Self {
        self.angular = angular;
        self
    }
}

impl Damping {
    /// Returns a linear damping
    #[must_use]
    pub fn from_linear(linear: f32) -> Self {
        Self {
            linear,
            angular: 0.0,
        }
    }

    /// Returns an angular damping
    #[must_use]
    pub fn from_angular(angular: f32) -> Self {
        Self {
            angular,
            linear: 0.0,
        }
    }

    /// Returns a new version with the given linear damping
    #[must_use]
    pub fn with_linear(mut self, linear: f32) -> Self {
        self.linear = linear;
        self
    }

    /// Returns a new version with the given angular damping
    #[must_use]
    pub fn with_angular(mut self, angular: f32) -> Self {
        self.angular = angular;
        self
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Vec2> for Velocity {
    fn from(v: Vec2) -> Self {
        Self::from_linear(v.extend(0.0))
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Vec3> for Velocity {
    fn from(linear: Vec3) -> Self {
        Self::from_linear(linear)
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Velocity> for Vec3 {
    fn from(Velocity { linear, .. }: Velocity) -> Self {
        linear
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<AxisAngle> for Velocity {
    fn from(angular: AxisAngle) -> Self {
        Self::from_angular(angular)
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Quat> for Velocity {
    fn from(quat: Quat) -> Self {
        Self::from_angular(quat.into())
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Velocity> for AxisAngle {
    fn from(Velocity { angular, .. }: Velocity) -> Self {
        angular
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl From<Velocity> for Quat {
    fn from(Velocity { angular, .. }: Velocity) -> Self {
        angular.into()
    }
}

impl From<Vec3> for AxisAngle {
    fn from(v: Vec3) -> Self {
        Self(v)
    }
}

impl From<AxisAngle> for Vec3 {
    fn from(AxisAngle(v): AxisAngle) -> Self {
        v
    }
}

impl From<AxisAngle> for f32 {
    fn from(AxisAngle(v): AxisAngle) -> Self {
        v.length()
    }
}

#[duplicate_item(
  Velocity;
  [ Velocity ];
  [ Acceleration ];
)]
impl NearZero for Velocity {
    fn is_near_zero(self) -> bool {
        self.linear.is_near_zero() && self.angular.is_near_zero()
    }
}

impl MulAssign<f32> for AxisAngle {
    fn mul_assign(&mut self, rhs: f32) {
        self.0 = self.0 * rhs;
    }
}

impl Mul<f32> for AxisAngle {
    type Output = Self;

    fn mul(mut self, rhs: f32) -> Self::Output {
        self *= rhs;
        self
    }
}

impl Mul<AxisAngle> for f32 {
    type Output = AxisAngle;

    fn mul(self, mut rhs: AxisAngle) -> Self::Output {
        rhs *= self;
        rhs
    }
}

impl AxisAngle {
    /// Create a new axis-angle
    #[inline]
    #[must_use]
    pub fn new(axis: Vec3, angle: f32) -> Self {
        Self(axis.normalize() * angle)
    }

    /// Squared angle.
    ///
    /// In general faster than `angle` because it doesn't need to perform a square-root
    #[inline]
    #[must_use]
    pub fn angle_squared(self) -> f32 {
        self.0.length_squared()
    }

    /// Angle around the axis.
    ///
    /// For comparison you may consider `angle_squared`, that doesn't need to perform a square root.
    #[inline]
    #[must_use]
    pub fn angle(self) -> f32 {
        self.0.length()
    }

    /// Returns the axis **NOT** normalized.
    #[inline]
    #[must_use]
    pub fn axis(self) -> Vec3 {
        self.0
    }
}

impl NearZero for AxisAngle {
    fn is_near_zero(self) -> bool {
        self.0.is_near_zero()
    }
}

impl From<Quat> for AxisAngle {
    fn from(quat: Quat) -> Self {
        let length = quat.length();
        let (axis, angle) = quat.to_axis_angle();
        Self(axis.normalize() * (angle * length))
    }
}

impl From<AxisAngle> for Quat {
    fn from(axis_angle: AxisAngle) -> Self {
        if axis_angle.is_near_zero() {
            Quat::IDENTITY
        } else {
            let angle = axis_angle.0.length();
            Quat::from_axis_angle(axis_angle.0 / angle, angle)
        }
    }
}