1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::alloc::{vec, vec::Vec};
use core::any::TypeId;
use core::borrow::Borrow;
use core::convert::TryFrom;
use core::hash::{BuildHasherDefault, Hasher};
use core::marker::PhantomData;
use spin::Mutex;

use core::{fmt, ptr};

#[cfg(feature = "std")]
use std::error::Error;

use hashbrown::{HashMap, HashSet};

use crate::alloc::boxed::Box;
use crate::archetype::{Archetype, TypeIdMap, TypeInfo};
use crate::entities::{Entities, EntityMeta, Location, ReserveEntitiesIterator};
use crate::{
    Bundle, Column, ColumnBatch, ColumnMut, DynamicBundle, Entity, EntityRef, Fetch,
    MissingComponent, NoSuchEntity, Query, QueryBorrow, QueryItem, QueryMut, QueryOne, Ref, RefMut,
};

/// An unordered collection of entities, each having any number of distinctly typed components
///
/// Similar to `HashMap<Entity, Vec<Box<dyn Any>>>` where each `Vec` never contains two of the same
/// type, but far more efficient to traverse.
///
/// The components of entities who have the same set of component types are stored in contiguous
/// runs, allowing for extremely fast, cache-friendly iteration.
///
/// There is a maximum number of unique entity IDs, which means that there is a maximum number of live
/// entities. When old entities are despawned, their IDs will be reused on a future entity, and
/// old `Entity` values with that ID will be invalidated.
///
/// ### Collisions
///
/// If an entity is despawned and its `Entity` handle is preserved over the course of billions of
/// following spawns and despawns, that handle may, in rare circumstances, collide with a
/// newly-allocated `Entity` handle. Very long-lived applications should therefore limit the period
/// over which they may retain handles of despawned entities.
pub struct World {
    entities: Entities,
    archetypes: ArchetypeSet,
    /// Maps statically-typed bundle types to archetypes
    bundle_to_archetype: TypeIdMap<u32>,
    /// Maps source archetype and static bundle types to the archetype that an entity is moved to
    /// after inserting the components from that bundle.
    insert_edges: IndexTypeIdMap<InsertTarget>,
    /// Maps source archetype and static bundle types to the archetype that an entity is moved to
    /// after removing the components from that bundle.
    remove_edges: IndexTypeIdMap<u32>,
    id: u64,
}

impl World {
    /// Create an empty world
    pub fn new() -> Self {
        // AtomicU64 is unsupported on 32-bit MIPS and PPC architectures
        // For compatibility, use Mutex<u64>
        static ID: Mutex<u64> = Mutex::new(1);
        let id = {
            let mut id = ID.lock();
            let next = id.checked_add(1).unwrap();
            *id = next;
            next
        };
        Self {
            entities: Entities::default(),
            archetypes: ArchetypeSet::new(),
            bundle_to_archetype: HashMap::default(),
            insert_edges: HashMap::default(),
            remove_edges: HashMap::default(),
            id,
        }
    }

    /// Create an entity with certain components
    ///
    /// Returns the ID of the newly created entity.
    ///
    /// Arguments can be tuples, structs annotated with [`#[derive(Bundle)]`](macro@Bundle), or the
    /// result of calling [`build`](crate::EntityBuilder::build) on an
    /// [`EntityBuilder`](crate::EntityBuilder), which is useful if the set of components isn't
    /// statically known. To spawn an entity with only one component, use a one-element tuple like
    /// `(x,)`.
    ///
    /// Any type that satisfies `Send + Sync + 'static` can be used as a component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, "abc"));
    /// let b = world.spawn((456, true));
    /// ```
    pub fn spawn(&mut self, components: impl DynamicBundle) -> Entity {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let entity = self.entities.alloc();

        self.spawn_inner(entity, components);

        entity
    }

    /// Create an entity with certain components and a specific [`Entity`] handle.
    ///
    /// See [`spawn`](Self::spawn).
    ///
    /// Despawns any existing entity with the same [`Entity::id`].
    ///
    /// Useful for easy handle-preserving deserialization. Be cautious resurrecting old `Entity`
    /// handles in already-populated worlds as it vastly increases the likelihood of collisions.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, "abc"));
    /// let b = world.spawn((456, true));
    /// world.despawn(a);
    /// assert!(!world.contains(a));
    /// // all previous Entity values pointing to 'a' will be live again, instead pointing to the new entity.
    /// world.spawn_at(a, (789, "ABC"));
    /// assert!(world.contains(a));
    /// ```
    pub fn spawn_at(&mut self, handle: Entity, components: impl DynamicBundle) {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let loc = self.entities.alloc_at(handle);
        if let Some(loc) = loc {
            if let Some(moved) = unsafe {
                self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true)
            } {
                self.entities.meta[moved as usize].location.index = loc.index;
            }
        }

        self.spawn_inner(handle, components);
    }

    fn spawn_inner(&mut self, entity: Entity, components: impl DynamicBundle) {
        let archetype_id = match components.key() {
            Some(k) => {
                let archetypes = &mut self.archetypes;
                *self.bundle_to_archetype.entry(k).or_insert_with(|| {
                    components.with_ids(|ids| archetypes.get(ids, &|| components.type_info()))
                })
            }
            None => components.with_ids(|ids| self.archetypes.get(ids, &|| components.type_info())),
        };

        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        unsafe {
            let index = archetype.allocate(entity.id);
            components.put(|ptr, ty| {
                archetype.put_dynamic(ptr, ty.id(), ty.layout().size(), index);
            });
            self.entities.meta[entity.id as usize].location = Location {
                archetype: archetype_id,
                index,
            };
        }
    }

    /// Efficiently spawn a large number of entities with the same statically-typed components
    ///
    /// Faster than calling [`spawn`](Self::spawn) repeatedly with the same components, but requires
    /// that component types are known at compile time.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let entities = world.spawn_batch((0..1_000).map(|i| (i, "abc"))).collect::<Vec<_>>();
    /// for i in 0..1_000 {
    ///     assert_eq!(*world.get::<i32>(entities[i]).unwrap(), i as i32);
    /// }
    /// ```
    pub fn spawn_batch<I>(&mut self, iter: I) -> SpawnBatchIter<'_, I::IntoIter>
    where
        I: IntoIterator,
        I::Item: Bundle + 'static,
    {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let iter = iter.into_iter();
        let (lower, upper) = iter.size_hint();
        let archetype_id = self.reserve_inner::<I::Item>(
            u32::try_from(upper.unwrap_or(lower)).expect("iterator too large"),
        );

        SpawnBatchIter {
            inner: iter,
            entities: &mut self.entities,
            archetype_id,
            archetype: &mut self.archetypes.archetypes[archetype_id as usize],
        }
    }

    /// Super-efficiently spawn the contents of a [`ColumnBatch`]
    ///
    /// The fastest, but most specialized, way to spawn large numbers of entities. Useful for high
    /// performance deserialization. Supports dynamic component types.
    pub fn spawn_column_batch(&mut self, batch: ColumnBatch) -> SpawnColumnBatchIter<'_> {
        self.flush();

        let archetype = batch.0;
        let entity_count = archetype.len();
        // Store component data
        let (archetype_id, base) = self.archetypes.insert_batch(archetype);

        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        let id_alloc = self.entities.alloc_many(entity_count, archetype_id, base);

        // Fix up entity IDs
        let mut id_alloc_clone = id_alloc.clone();
        let mut index = base as usize;
        while let Some(id) = id_alloc_clone.next(&self.entities) {
            archetype.set_entity_id(index, id);
            index += 1;
        }

        // Return iterator over new IDs
        SpawnColumnBatchIter {
            pending_end: id_alloc.pending_end,
            id_alloc,
            entities: &mut self.entities,
        }
    }

    /// Hybrid of [`spawn_column_batch`](Self::spawn_column_batch) and [`spawn_at`](Self::spawn_at)
    pub fn spawn_column_batch_at(&mut self, handles: &[Entity], batch: ColumnBatch) {
        let archetype = batch.0;
        assert_eq!(
            handles.len(),
            archetype.len() as usize,
            "number of entity IDs {} must match number of entities {}",
            handles.len(),
            archetype.len()
        );

        // Drop components of entities that will be replaced
        for &handle in handles {
            let loc = self.entities.alloc_at(handle);
            if let Some(loc) = loc {
                if let Some(moved) = unsafe {
                    self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true)
                } {
                    self.entities.meta[moved as usize].location.index = loc.index;
                }
            }
        }

        // Store components
        let (archetype_id, base) = self.archetypes.insert_batch(archetype);

        // Fix up entity IDs
        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        for (&handle, index) in handles.iter().zip(base as usize..) {
            archetype.set_entity_id(index, handle.id());
            self.entities.meta[handle.id() as usize].location = Location {
                archetype: archetype_id,
                index: index as u32,
            };
        }
    }

    /// Allocate many entities ID concurrently
    ///
    /// Unlike [`spawn`](Self::spawn), this can be called concurrently with other operations on the
    /// [`World`] such as queries, but does not immediately create the entities. Reserved entities
    /// are not visible to queries or world iteration, but can be otherwise operated on
    /// freely. Operations that add or remove components or entities, such as `insert` or `despawn`,
    /// will cause all outstanding reserved entities to become real entities before proceeding. This
    /// can also be done explicitly by calling [`flush`](Self::flush).
    ///
    /// Useful for reserving an ID that will later have components attached to it with `insert`.
    pub fn reserve_entities(&self, count: u32) -> ReserveEntitiesIterator {
        self.entities.reserve_entities(count)
    }

    /// Allocate an entity ID concurrently
    ///
    /// See [`reserve_entities`](Self::reserve_entities).
    pub fn reserve_entity(&self) -> Entity {
        self.entities.reserve_entity()
    }

    /// Destroy an entity and all its components
    pub fn despawn(&mut self, entity: Entity) -> Result<(), NoSuchEntity> {
        self.flush();
        let loc = self.entities.free(entity)?;
        if let Some(moved) =
            unsafe { self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true) }
        {
            self.entities.meta[moved as usize].location.index = loc.index;
        }
        Ok(())
    }

    /// Ensure at least `additional` entities with exact components `T` can be spawned without reallocating
    pub fn reserve<T: Bundle + 'static>(&mut self, additional: u32) {
        self.reserve_inner::<T>(additional);
    }

    fn reserve_inner<T: Bundle + 'static>(&mut self, additional: u32) -> u32 {
        self.flush();
        self.entities.reserve(additional);

        let archetypes = &mut self.archetypes;
        let archetype_id = *self
            .bundle_to_archetype
            .entry(TypeId::of::<T>())
            .or_insert_with(|| {
                T::with_static_ids(|ids| archetypes.get(ids, &|| T::static_type_info()))
            });

        self.archetypes.archetypes[archetype_id as usize].reserve(additional);
        archetype_id
    }

    /// Despawn all entities
    ///
    /// Preserves allocated storage for reuse.
    pub fn clear(&mut self) {
        for x in &mut self.archetypes.archetypes {
            x.clear();
        }
        self.entities.clear();
    }

    /// Whether `entity` still exists
    pub fn contains(&self, entity: Entity) -> bool {
        self.entities.contains(entity)
    }

    /// Efficiently iterate over all entities that have certain components, using dynamic borrow
    /// checking
    ///
    /// Prefer [`query_mut`](Self::query_mut) when concurrent access to the [`World`] is not required.
    ///
    /// Calling `iter` on the returned value yields `(Entity, Q)` tuples, where `Q` is some query
    /// type. A query type is any type for which an implementation of [`Query`] exists, e.g. `&T`,
    /// `&mut T`, a tuple of query types, or an `Option` wrapping a query type, where `T` is any
    /// component type. Components queried with `&mut` must only appear once. Entities which do not
    /// have a component type referenced outside of an `Option` will be skipped.
    ///
    /// Entities are yielded in arbitrary order.
    ///
    /// The returned [`QueryBorrow`] can be further transformed with combinator methods; see its
    /// documentation for details.
    ///
    /// Iterating a query will panic if it would violate an existing unique reference or construct
    /// an invalid unique reference. This occurs when two simultaneously-active queries could expose
    /// the same entity. Simultaneous queries can access the same component type if and only if the
    /// world contains no entities that have all components required by both queries, assuming no
    /// other component borrows are outstanding.
    ///
    /// Iterating a query yields references with lifetimes bound to the [`QueryBorrow`] returned
    /// here. To ensure those are invalidated, the return value of this method must be dropped for
    /// its dynamic borrows from the world to be released. Similarly, lifetime rules ensure that
    /// references obtained from a query cannot outlive the [`QueryBorrow`].
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// let b = world.spawn((456, false));
    /// let c = world.spawn((42, "def"));
    /// let entities = world.query::<(&i32, &bool)>()
    ///     .iter()
    ///     .map(|(e, (&i, &b))| (e, i, b)) // Copy out of the world
    ///     .collect::<Vec<_>>();
    /// assert_eq!(entities.len(), 2);
    /// assert!(entities.contains(&(a, 123, true)));
    /// assert!(entities.contains(&(b, 456, false)));
    /// ```
    pub fn query<Q: Query>(&self) -> QueryBorrow<'_, Q> {
        QueryBorrow::new(&self.entities.meta, &self.archetypes.archetypes)
    }

    /// Query a uniquely borrowed world
    ///
    /// Like [`query`](Self::query), but faster because dynamic borrow checks can be skipped. Note
    /// that, unlike [`query`](Self::query), this returns an `IntoIterator` which can be passed
    /// directly to a `for` loop.
    pub fn query_mut<Q: Query>(&mut self) -> QueryMut<'_, Q> {
        QueryMut::new(&self.entities.meta, &mut self.archetypes.archetypes)
    }

    pub(crate) fn memo(&self) -> (u64, u64) {
        (self.id, self.archetypes.generation)
    }

    pub(crate) fn entities_meta(&self) -> &[EntityMeta] {
        &self.entities.meta
    }

    pub(crate) fn archetypes_inner(&self) -> &[Archetype] {
        &self.archetypes.archetypes
    }

    /// Prepare a query against a single entity, using dynamic borrow checking
    ///
    /// Prefer [`query_one_mut`](Self::query_one_mut) when concurrent access to the [`World`] is not
    /// required.
    ///
    /// Call [`get`](QueryOne::get) on the resulting [`QueryOne`] to actually execute the query. The
    /// [`QueryOne`] value is responsible for releasing the dynamically-checked borrow made by
    /// `get`, so it can't be dropped while references returned by `get` are live.
    ///
    /// Handy for accessing multiple components simultaneously.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// // The returned query must outlive the borrow made by `get`
    /// let mut query = world.query_one::<(&mut i32, &bool)>(a).unwrap();
    /// let (number, flag) = query.get().unwrap();
    /// if *flag { *number *= 2; }
    /// assert_eq!(*number, 246);
    /// ```
    pub fn query_one<Q: Query>(&self, entity: Entity) -> Result<QueryOne<'_, Q>, NoSuchEntity> {
        let loc = self.entities.get(entity)?;
        Ok(unsafe {
            QueryOne::new(
                &self.archetypes.archetypes[loc.archetype as usize],
                loc.index,
            )
        })
    }

    /// Query a single entity in a uniquely borrow world
    ///
    /// Like [`query_one`](Self::query_one), but faster because dynamic borrow checks can be
    /// skipped. Note that, unlike [`query_one`](Self::query_one), on success this returns the
    /// query's results directly.
    pub fn query_one_mut<Q: Query>(
        &mut self,
        entity: Entity,
    ) -> Result<QueryItem<'_, Q>, QueryOneError> {
        let loc = self.entities.get(entity)?;
        unsafe {
            let archetype = &self.archetypes.archetypes[loc.archetype as usize];
            let state = Q::Fetch::prepare(archetype).ok_or(QueryOneError::Unsatisfied)?;
            let fetch = Q::Fetch::execute(archetype, state);
            Ok(fetch.get(loc.index as usize))
        }
    }

    /// Borrow the `T` component of `entity`
    ///
    /// Panics if the component is already uniquely borrowed from another entity with the same
    /// components.
    pub fn get<T: Component>(&self, entity: Entity) -> Result<Ref<'_, T>, ComponentError> {
        Ok(self
            .entity(entity)?
            .get()
            .ok_or_else(MissingComponent::new::<T>)?)
    }

    /// Uniquely borrow the `T` component of `entity`
    ///
    /// Panics if the component is already borrowed from another entity with the same components.
    pub fn get_mut<T: Component>(&self, entity: Entity) -> Result<RefMut<'_, T>, ComponentError> {
        Ok(self
            .entity(entity)?
            .get_mut()
            .ok_or_else(MissingComponent::new::<T>)?)
    }

    /// Access an entity regardless of its component types
    ///
    /// Does not immediately borrow any component.
    pub fn entity(&self, entity: Entity) -> Result<EntityRef<'_>, NoSuchEntity> {
        let loc = self.entities.get(entity)?;
        unsafe {
            Ok(EntityRef::new(
                &self.archetypes.archetypes[loc.archetype as usize],
                entity,
                loc.index,
            ))
        }
    }

    /// Given an id obtained from [`Entity::id`], reconstruct the still-live [`Entity`].
    ///
    /// # Safety
    ///
    /// `id` must correspond to a currently live [`Entity`]. A despawned or never-allocated `id`
    /// will produce undefined behavior.
    pub unsafe fn find_entity_from_id(&self, id: u32) -> Entity {
        self.entities.resolve_unknown_gen(id)
    }

    /// Iterate over all entities in the world
    ///
    /// Entities are yielded in arbitrary order. Prefer [`query`](Self::query) for better
    /// performance when components will be accessed in predictable patterns.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn(());
    /// let b = world.spawn(());
    /// let ids = world.iter().map(|entity_ref| entity_ref.entity()).collect::<Vec<_>>();
    /// assert_eq!(ids.len(), 2);
    /// assert!(ids.contains(&a));
    /// assert!(ids.contains(&b));
    /// ```
    pub fn iter(&self) -> Iter<'_> {
        Iter::new(&self.archetypes.archetypes, &self.entities)
    }

    /// Add `components` to `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. If an entity
    /// already has a component of a certain type, it is dropped and replaced.
    ///
    /// When inserting a single component, see [`insert_one`](Self::insert_one) for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc"));
    /// world.insert(e, (456, true));
    /// assert_eq!(*world.get::<i32>(e).unwrap(), 456);
    /// assert_eq!(*world.get::<bool>(e).unwrap(), true);
    /// ```
    pub fn insert(
        &mut self,
        entity: Entity,
        components: impl DynamicBundle,
    ) -> Result<(), NoSuchEntity> {
        self.flush();

        let loc = self.entities.get(entity)?;
        self.insert_inner(entity, components, loc.archetype, loc)
    }

    /// The implementation backing [`insert`](Self::insert) exposed so that it can also be used by [`exchange`](Self::exchange).
    ///
    /// Note that `graph_origin` is always equal to `loc.archetype` during insertion. Only for exchange, `graph_origin` identifies
    /// the intermediate archetype which would be reached after removal and before insertion even though
    /// the actual component data still resides in `loc.archetype`.
    fn insert_inner(
        &mut self,
        entity: Entity,
        components: impl DynamicBundle,
        graph_origin: u32,
        loc: Location,
    ) -> Result<(), NoSuchEntity> {
        let target_storage;
        let target = match components.key() {
            None => {
                target_storage = self.archetypes.get_insert_target(graph_origin, &components);
                &target_storage
            }
            Some(key) => match self.insert_edges.get(&(graph_origin, key)) {
                Some(x) => x,
                None => {
                    let t = self.archetypes.get_insert_target(graph_origin, &components);
                    self.insert_edges.entry((graph_origin, key)).or_insert(t)
                }
            },
        };

        unsafe {
            // Drop the components we're overwriting
            let source_arch = &mut self.archetypes.archetypes[loc.archetype as usize];
            for &ty in &target.replaced {
                let ptr = source_arch
                    .get_dynamic(ty.id(), ty.layout().size(), loc.index)
                    .unwrap();
                ty.drop(ptr.as_ptr());
            }

            if target.index == loc.archetype {
                // Update components in the current archetype
                let arch = &mut self.archetypes.archetypes[loc.archetype as usize];
                components.put(|ptr, ty| {
                    arch.put_dynamic(ptr, ty.id(), ty.layout().size(), loc.index);
                });
                return Ok(());
            }

            let (source_arch, target_arch) = index2(
                &mut self.archetypes.archetypes,
                loc.archetype as usize,
                target.index as usize,
            );

            // Allocate storage in the archetype and update the entity's location to address it
            let target_index = target_arch.allocate(entity.id);
            let meta = &mut self.entities.meta[entity.id as usize];
            meta.location.archetype = target.index;
            meta.location.index = target_index;

            // Move the new components
            components.put(|ptr, ty| {
                target_arch.put_dynamic(ptr, ty.id(), ty.layout().size(), target_index);
            });

            // Move the components we're keeping
            for &ty in &target.retained {
                let src = source_arch
                    .get_dynamic(ty.id(), ty.layout().size(), loc.index)
                    .unwrap();
                target_arch.put_dynamic(src.as_ptr(), ty.id(), ty.layout().size(), target_index)
            }

            // Free storage in the old archetype
            if let Some(moved) = source_arch.remove(loc.index, false) {
                self.entities.meta[moved as usize].location.index = loc.index;
            }
        }
        Ok(())
    }

    /// Add `component` to `entity`
    ///
    /// See [`insert`](Self::insert).
    pub fn insert_one(
        &mut self,
        entity: Entity,
        component: impl Component,
    ) -> Result<(), NoSuchEntity> {
        self.insert(entity, (component,))
    }

    /// Remove components from `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. The entity
    /// itself is not removed, even if no components remain; use `despawn` for that. If any
    /// component in `T` is not present in `entity`, no components are removed and an error is
    /// returned.
    ///
    /// When removing a single component, see [`remove_one`](Self::remove_one) for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc", true));
    /// assert_eq!(world.remove::<(i32, &str)>(e), Ok((123, "abc")));
    /// assert!(world.get::<i32>(e).is_err());
    /// assert!(world.get::<&str>(e).is_err());
    /// assert_eq!(*world.get::<bool>(e).unwrap(), true);
    /// ```
    pub fn remove<T: Bundle + 'static>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        self.flush();

        // Gather current metadata
        let loc = self.entities.get_mut(entity)?;
        let old_index = loc.index;
        let source_arch = &self.archetypes.archetypes[loc.archetype as usize];

        // Move out of the source archetype, or bail out if a component is missing
        let bundle = unsafe {
            T::get(|ty| source_arch.get_dynamic(ty.id(), ty.layout().size(), old_index))?
        };

        // Find the target archetype ID
        let target =
            Self::remove_target::<T>(&mut self.archetypes, &mut self.remove_edges, loc.archetype);

        // Store components to the target archetype and update metadata
        if loc.archetype != target {
            // If we actually removed any components, the entity needs to be moved into a new archetype
            unsafe {
                let (source_arch, target_arch) = index2(
                    &mut self.archetypes.archetypes,
                    loc.archetype as usize,
                    target as usize,
                );
                let target_index = target_arch.allocate(entity.id);
                loc.archetype = target;
                loc.index = target_index;
                if let Some(moved) = source_arch.move_to(old_index, |src, ty, size| {
                    // Only move the components present in the target archetype, i.e. the non-removed ones.
                    if let Some(dst) = target_arch.get_dynamic(ty, size, target_index) {
                        ptr::copy_nonoverlapping(src, dst.as_ptr(), size);
                    }
                }) {
                    self.entities.meta[moved as usize].location.index = old_index;
                }
            }
        }

        Ok(bundle)
    }

    fn remove_target<T: Bundle + 'static>(
        archetypes: &mut ArchetypeSet,
        remove_edges: &mut IndexTypeIdMap<u32>,
        old_archetype: u32,
    ) -> u32 {
        match remove_edges.get(&(old_archetype, TypeId::of::<T>())) {
            Some(&x) => x,
            None => {
                let removed = T::with_static_ids(|ids| ids.iter().copied().collect::<HashSet<_>>());
                let info = archetypes.archetypes[old_archetype as usize]
                    .types()
                    .iter()
                    .cloned()
                    .filter(|x| !removed.contains(&x.id()))
                    .collect::<Vec<_>>();
                let elements = info.iter().map(|x| x.id()).collect::<Box<_>>();
                let index = archetypes.get(&*elements, move || info);

                remove_edges.insert((old_archetype, TypeId::of::<T>()), index);

                index
            }
        }
    }

    /// Remove the `T` component from `entity`
    ///
    /// See [`remove`](Self::remove).
    pub fn remove_one<T: Component>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        self.remove::<(T,)>(entity).map(|(x,)| x)
    }

    /// Remove `S` components from `entity` and then add `components`
    ///
    /// This has the same effect as calling [`remove::<S>`](Self::remove) and then [`insert::<T>`](Self::insert),
    /// but is more efficient as the intermediate archetype after removal but before insertion is skipped.
    pub fn exchange<S: Bundle + 'static, T: DynamicBundle>(
        &mut self,
        entity: Entity,
        components: T,
    ) -> Result<S, ComponentError> {
        self.flush();

        // Gather current metadata
        let loc = self.entities.get(entity)?;

        // Move out of the source archetype, or bail out if a component is missing
        let source_arch = &self.archetypes.archetypes[loc.archetype as usize];

        let bundle = unsafe {
            S::get(|ty| source_arch.get_dynamic(ty.id(), ty.layout().size(), loc.index))?
        };

        // Find the intermediate archetype ID
        let intermediate =
            Self::remove_target::<S>(&mut self.archetypes, &mut self.remove_edges, loc.archetype);

        self.insert_inner(entity, components, intermediate, loc)?;

        Ok(bundle)
    }

    /// Remove the `S` component from `entity` and then add `component`
    ///
    /// See [`exchange`](Self::exchange).
    pub fn exchange_one<S: Component, T: Component>(
        &mut self,
        entity: Entity,
        component: T,
    ) -> Result<S, ComponentError> {
        self.exchange::<(S,), (T,)>(entity, (component,))
            .map(|(x,)| x)
    }

    /// Borrow the `T` component of `entity` without safety checks
    ///
    /// Should only be used as a building block for safe abstractions.
    ///
    /// # Safety
    ///
    /// `entity` must have been previously obtained from this [`World`], and no unique borrow of the
    /// same component of `entity` may be live simultaneous to the returned reference.
    pub unsafe fn get_unchecked<T: Component>(&self, entity: Entity) -> Result<&T, ComponentError> {
        let loc = self.entities.get(entity)?;
        let archetype = &self.archetypes.archetypes[loc.archetype as usize];
        let state = archetype
            .get_state::<T>()
            .ok_or_else(MissingComponent::new::<T>)?;
        Ok(&*archetype
            .get_base::<T>(state)
            .as_ptr()
            .add(loc.index as usize))
    }

    /// Uniquely borrow the `T` component of `entity` without safety checks
    ///
    /// Should only be used as a building block for safe abstractions.
    ///
    /// # Safety
    ///
    /// `entity` must have been previously obtained from this [`World`], and no borrow of the same
    /// component of `entity` may be live simultaneous to the returned reference.
    pub unsafe fn get_unchecked_mut<T: Component>(
        &self,
        entity: Entity,
    ) -> Result<&mut T, ComponentError> {
        let loc = self.entities.get(entity)?;
        let archetype = &self.archetypes.archetypes[loc.archetype as usize];
        let state = archetype
            .get_state::<T>()
            .ok_or_else(MissingComponent::new::<T>)?;
        Ok(&mut *archetype
            .get_base::<T>(state)
            .as_ptr()
            .add(loc.index as usize))
    }

    /// Convert all reserved entities into empty entities that can be iterated and accessed
    ///
    /// Invoked implicitly by operations that add or remove components or entities, i.e. all
    /// variations of `spawn`, `despawn`, `insert`, and `remove`.
    pub fn flush(&mut self) {
        let arch = &mut self.archetypes.archetypes[0];
        self.entities
            .flush(|id, location| location.index = unsafe { arch.allocate(id) });
    }

    /// Inspect the archetypes that entities are organized into
    ///
    /// Useful for dynamically scheduling concurrent queries by checking borrows in advance, and for
    /// efficient serialization.
    pub fn archetypes(&self) -> impl ExactSizeIterator<Item = &'_ Archetype> + '_ {
        self.archetypes_inner().iter()
    }

    /// Borrow every `T` component for efficient random access
    ///
    /// [`Column::get`] is semantically equivalent to [`World::get`], except that every `T`
    /// component is borrowed in advance, and repeated calls are much cheaper, at the cost of
    /// additional work when the [`Column`] is fetched.
    ///
    /// Panics if a unique borrow is outstanding for any `T` component.
    ///
    /// # Example
    /// ```
    /// use::hecs::*;
    /// let mut world = World::new();
    /// let ent = world.spawn((123, "abc"));
    /// let column = world.column::<i32>();
    /// assert_eq!(*column.get(ent).unwrap(), 123);
    /// ```
    #[deprecated(since = "0.7.2", note = "use the more general QueryBorrow::view")]
    pub fn column<T: Component>(&self) -> Column<'_, T> {
        let archetypes = self.archetypes.archetypes.as_slice();
        let entities = self.entities.meta.as_slice();
        Column::new(entities, archetypes, PhantomData)
    }

    /// Uniquely borrows every `T` component for efficient random access
    ///
    /// See [`World::column`].
    #[deprecated(since = "0.7.2", note = "use the more general QueryBorrow::view")]
    pub fn column_mut<T: Component>(&self) -> ColumnMut<'_, T> {
        let archetypes = self.archetypes.archetypes.as_slice();
        let entities = self.entities.meta.as_slice();
        ColumnMut::new(entities, archetypes, PhantomData)
    }

    /// Returns a distinct value after `archetypes` is changed
    ///
    /// Store the current value after deriving information from [`archetypes`](Self::archetypes),
    /// then check whether the value returned by this function differs before attempting an
    /// operation that relies on its correctness. Useful for determining whether e.g. a concurrent
    /// query execution plan is still correct.
    ///
    /// The generation may be, but is not necessarily, changed as a result of adding or removing any
    /// entity or component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let initial_gen = world.archetypes_generation();
    /// world.spawn((123, "abc"));
    /// assert_ne!(initial_gen, world.archetypes_generation());
    /// ```
    pub fn archetypes_generation(&self) -> ArchetypesGeneration {
        ArchetypesGeneration(self.archetypes.generation)
    }

    /// Number of currently live entities
    #[inline]
    pub fn len(&self) -> u32 {
        self.entities.len()
    }

    /// Whether no entities are live
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

unsafe impl Send for World {}
unsafe impl Sync for World {}

impl Default for World {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a> IntoIterator for &'a World {
    type IntoIter = Iter<'a>;
    type Item = EntityRef<'a>;
    fn into_iter(self) -> Iter<'a> {
        self.iter()
    }
}

fn index2<T>(x: &mut [T], i: usize, j: usize) -> (&mut T, &mut T) {
    assert!(i != j);
    assert!(i < x.len());
    assert!(j < x.len());
    let ptr = x.as_mut_ptr();
    unsafe { (&mut *ptr.add(i), &mut *ptr.add(j)) }
}

/// Errors that arise when accessing components
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum ComponentError {
    /// The entity was already despawned
    NoSuchEntity,
    /// The entity did not have a requested component
    MissingComponent(MissingComponent),
}

#[cfg(feature = "std")]
impl Error for ComponentError {}

impl fmt::Display for ComponentError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use ComponentError::*;
        match *self {
            NoSuchEntity => f.write_str("no such entity"),
            MissingComponent(ref x) => x.fmt(f),
        }
    }
}

impl From<NoSuchEntity> for ComponentError {
    fn from(NoSuchEntity: NoSuchEntity) -> Self {
        ComponentError::NoSuchEntity
    }
}

impl From<MissingComponent> for ComponentError {
    fn from(x: MissingComponent) -> Self {
        ComponentError::MissingComponent(x)
    }
}

/// Errors that arise when querying a single entity
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum QueryOneError {
    /// The entity was already despawned
    NoSuchEntity,
    /// The entity exists but does not satisfy the query
    Unsatisfied,
}

#[cfg(feature = "std")]
impl Error for QueryOneError {}

impl fmt::Display for QueryOneError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use QueryOneError::*;
        match *self {
            NoSuchEntity => f.write_str("no such entity"),
            Unsatisfied => f.write_str("unsatisfied"),
        }
    }
}

impl From<NoSuchEntity> for QueryOneError {
    fn from(NoSuchEntity: NoSuchEntity) -> Self {
        QueryOneError::NoSuchEntity
    }
}

/// Types that can be components, implemented automatically for all `Send + Sync + 'static` types
///
/// This is just a convenient shorthand for `Send + Sync + 'static`, and never needs to be
/// implemented manually.
pub trait Component: Send + Sync + 'static {}
impl<T: Send + Sync + 'static> Component for T {}

/// Iterator over all of a world's entities
pub struct Iter<'a> {
    archetypes: core::slice::Iter<'a, Archetype>,
    entities: &'a Entities,
    current: Option<&'a Archetype>,
    index: u32,
}

impl<'a> Iter<'a> {
    fn new(archetypes: &'a [Archetype], entities: &'a Entities) -> Self {
        Self {
            archetypes: archetypes.iter(),
            entities,
            current: None,
            index: 0,
        }
    }
}

unsafe impl Send for Iter<'_> {}
unsafe impl Sync for Iter<'_> {}

impl<'a> Iterator for Iter<'a> {
    type Item = EntityRef<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.current {
                None => {
                    self.current = Some(self.archetypes.next()?);
                    self.index = 0;
                }
                Some(current) => {
                    if self.index == current.len() as u32 {
                        self.current = None;
                        continue;
                    }
                    let index = self.index;
                    self.index += 1;
                    let id = current.entity_id(index);
                    return Some(unsafe {
                        EntityRef::new(
                            current,
                            Entity {
                                id,
                                generation: self.entities.meta[id as usize].generation,
                            },
                            index,
                        )
                    });
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

impl ExactSizeIterator for Iter<'_> {
    #[inline]
    fn len(&self) -> usize {
        self.entities.len() as usize
    }
}

impl<A: DynamicBundle> Extend<A> for World {
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = A>,
    {
        for x in iter {
            self.spawn(x);
        }
    }
}

impl<A: DynamicBundle> core::iter::FromIterator<A> for World {
    fn from_iter<I: IntoIterator<Item = A>>(iter: I) -> Self {
        let mut world = World::new();
        world.extend(iter);
        world
    }
}

/// Determines freshness of information derived from [`World::archetypes`]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct ArchetypesGeneration(u64);

/// Entity IDs created by [`World::spawn_batch`]
pub struct SpawnBatchIter<'a, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    inner: I,
    entities: &'a mut Entities,
    archetype_id: u32,
    archetype: &'a mut Archetype,
}

impl<I> Drop for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    fn drop(&mut self) {
        for _ in self {}
    }
}

impl<I> Iterator for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    type Item = Entity;

    fn next(&mut self) -> Option<Entity> {
        let components = self.inner.next()?;
        let entity = self.entities.alloc();
        unsafe {
            let index = self.archetype.allocate(entity.id);
            components.put(|ptr, ty| {
                self.archetype
                    .put_dynamic(ptr, ty.id(), ty.layout().size(), index);
            });
            self.entities.meta[entity.id as usize].location = Location {
                archetype: self.archetype_id,
                index,
            };
        }
        Some(entity)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<I, T> ExactSizeIterator for SpawnBatchIter<'_, I>
where
    I: ExactSizeIterator<Item = T>,
    T: Bundle,
{
    fn len(&self) -> usize {
        self.inner.len()
    }
}

/// Iterator over [`Entity`]s spawned by [`World::spawn_column_batch()`]
pub struct SpawnColumnBatchIter<'a> {
    pending_end: usize,
    id_alloc: crate::entities::AllocManyState,
    entities: &'a mut Entities,
}

impl Iterator for SpawnColumnBatchIter<'_> {
    type Item = Entity;

    fn next(&mut self) -> Option<Entity> {
        let id = self.id_alloc.next(self.entities)?;
        Some(unsafe { self.entities.resolve_unknown_gen(id) })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

impl ExactSizeIterator for SpawnColumnBatchIter<'_> {
    fn len(&self) -> usize {
        self.id_alloc.len(self.entities)
    }
}

impl Drop for SpawnColumnBatchIter<'_> {
    fn drop(&mut self) {
        // Consume used freelist entries
        self.entities.finish_alloc_many(self.pending_end);
    }
}

struct ArchetypeSet {
    /// Maps sorted component type sets to archetypes
    index: HashMap<Box<[TypeId]>, u32>,
    archetypes: Vec<Archetype>,
    generation: u64,
}

impl ArchetypeSet {
    fn new() -> Self {
        // `flush` assumes archetype 0 always exists, representing entities with no components.
        Self {
            index: Some((Box::default(), 0)).into_iter().collect(),
            archetypes: vec![Archetype::new(Vec::new())],
            generation: 0,
        }
    }

    /// Find the archetype ID that has exactly `components`
    fn get<T: Borrow<[TypeId]> + Into<Box<[TypeId]>>>(
        &mut self,
        components: T,
        info: impl FnOnce() -> Vec<TypeInfo>,
    ) -> u32 {
        self.index
            .get(components.borrow())
            .copied()
            .unwrap_or_else(|| self.insert(components.into(), info()))
    }

    fn insert(&mut self, components: Box<[TypeId]>, info: Vec<TypeInfo>) -> u32 {
        let x = self.archetypes.len() as u32;
        self.archetypes.push(Archetype::new(info));
        let old = self.index.insert(components, x);
        debug_assert!(old.is_none(), "inserted duplicate archetype");
        self.post_insert();
        x
    }

    /// Returns archetype ID and starting location index
    fn insert_batch(&mut self, archetype: Archetype) -> (u32, u32) {
        use hashbrown::hash_map::Entry;

        let ids = archetype
            .types()
            .iter()
            .map(|info| info.id())
            .collect::<Box<_>>();

        match self.index.entry(ids) {
            Entry::Occupied(x) => {
                // Duplicate of existing archetype
                let existing = &mut self.archetypes[*x.get() as usize];
                let base = existing.len();
                unsafe {
                    existing.merge(archetype);
                }
                (*x.get(), base)
            }
            Entry::Vacant(x) => {
                // Brand new archetype
                let id = self.archetypes.len() as u32;
                self.archetypes.push(archetype);
                x.insert(id);
                self.post_insert();
                (id, 0)
            }
        }
    }

    fn post_insert(&mut self) {
        self.generation += 1;
    }

    fn get_insert_target(&mut self, src: u32, components: &impl DynamicBundle) -> InsertTarget {
        // Assemble Vec<TypeInfo> for the final entity
        let arch = &mut self.archetypes[src as usize];
        let mut info = arch.types().to_vec();
        let mut replaced = Vec::new(); // Elements in both archetype.types() and components.type_info()
        let mut retained = Vec::new(); // Elements in archetype.types() but not components.type_info()

        // Because both `components.type_info()` and `arch.types()` are
        // ordered, we can identify elements in one but not the other efficiently with parallel
        // iteration.
        let mut src_ty = 0;
        for ty in components.type_info() {
            while src_ty < arch.types().len() && arch.types()[src_ty] <= ty {
                if arch.types()[src_ty] != ty {
                    retained.push(arch.types()[src_ty]);
                }
                src_ty += 1;
            }
            if arch.has_dynamic(ty.id()) {
                replaced.push(ty);
            } else {
                info.push(ty);
            }
        }
        info.sort_unstable();
        retained.extend_from_slice(&arch.types()[src_ty..]);

        // Find the archetype it'll live in
        let elements = info.iter().map(|x| x.id()).collect::<Box<_>>();
        let index = self.get(elements, move || info);
        InsertTarget {
            replaced,
            retained,
            index,
        }
    }
}

/// Metadata cached for inserting components into entities from this archetype
struct InsertTarget {
    /// Components from the current archetype that are replaced by the insert
    replaced: Vec<TypeInfo>,
    /// Components from the current archetype that are moved by the insert
    retained: Vec<TypeInfo>,
    /// ID of the target archetype
    index: u32,
}

type IndexTypeIdMap<V> = HashMap<(u32, TypeId), V, BuildHasherDefault<IndexTypeIdHasher>>;

#[derive(Default)]
struct IndexTypeIdHasher(u64);

impl Hasher for IndexTypeIdHasher {
    fn write_u32(&mut self, index: u32) {
        self.0 ^= u64::from(index);
    }

    fn write_u64(&mut self, type_id: u64) {
        self.0 ^= type_id;
    }

    fn write(&mut self, _bytes: &[u8]) {
        unreachable!()
    }

    fn finish(&self) -> u64 {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reuse_empty() {
        let mut world = World::new();
        let a = world.spawn(());
        world.despawn(a).unwrap();
        let b = world.spawn(());
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
    }

    #[test]
    fn spawn_at() {
        let mut world = World::new();
        let a = world.spawn(());
        world.despawn(a).unwrap();
        let b = world.spawn(());
        assert!(world.contains(b));
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
        world.spawn_at(a, ());
        assert!(!world.contains(b));
        assert_eq!(b.id, a.id);
        assert_ne!(b.generation, a.generation);
    }

    #[test]
    fn reuse_populated() {
        let mut world = World::new();
        let a = world.spawn((42,));
        assert_eq!(*world.get::<i32>(a).unwrap(), 42);
        world.despawn(a).unwrap();
        let b = world.spawn((true,));
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
        assert!(world.get::<i32>(b).is_err());
        assert!(*world.get::<bool>(b).unwrap());
    }

    #[test]
    fn remove_nothing() {
        let mut world = World::new();
        let a = world.spawn(("abc", 123));
        world.remove::<()>(a).unwrap();
    }
}