1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::alloc::{vec, vec::Vec};
use core::any::TypeId;
use core::borrow::Borrow;
use core::convert::TryFrom;
use core::hash::{BuildHasherDefault, Hasher};
use spin::Mutex;

use core::{fmt, ptr};

#[cfg(feature = "std")]
use std::error::Error;

use hashbrown::hash_map::{Entry, HashMap};

use crate::alloc::boxed::Box;
use crate::archetype::{Archetype, TypeIdMap, TypeInfo};
use crate::entities::{Entities, EntityMeta, Location, ReserveEntitiesIterator};
use crate::query::assert_borrow;
use crate::{
    Bundle, ColumnBatch, ComponentRef, DynamicBundle, Entity, EntityRef, Fetch, MissingComponent,
    NoSuchEntity, Query, QueryBorrow, QueryMut, QueryOne, TakenEntity,
};

/// An unordered collection of entities, each having any number of distinctly typed components
///
/// Similar to `HashMap<Entity, Vec<Box<dyn Any>>>` where each `Vec` never contains two of the same
/// type, but far more efficient to traverse.
///
/// The components of entities who have the same set of component types are stored in contiguous
/// runs, allowing for extremely fast, cache-friendly iteration.
///
/// There is a maximum number of unique entity IDs, which means that there is a maximum number of live
/// entities. When old entities are despawned, their IDs will be reused on a future entity, and
/// old `Entity` values with that ID will be invalidated.
///
/// ### Collisions
///
/// If an entity is despawned and its `Entity` handle is preserved over the course of billions of
/// following spawns and despawns, that handle may, in rare circumstances, collide with a
/// newly-allocated `Entity` handle. Very long-lived applications should therefore limit the period
/// over which they may retain handles of despawned entities.
pub struct World {
    entities: Entities,
    archetypes: ArchetypeSet,
    /// Maps statically-typed bundle types to archetypes
    bundle_to_archetype: TypeIdMap<u32>,
    /// Maps source archetype and static bundle types to the archetype that an entity is moved to
    /// after inserting the components from that bundle.
    insert_edges: IndexTypeIdMap<InsertTarget>,
    /// Maps source archetype and static bundle types to the archetype that an entity is moved to
    /// after removing the components from that bundle.
    remove_edges: IndexTypeIdMap<u32>,
    id: u64,
}

impl World {
    /// Create an empty world
    pub fn new() -> Self {
        // AtomicU64 is unsupported on 32-bit MIPS and PPC architectures
        // For compatibility, use Mutex<u64>
        static ID: Mutex<u64> = Mutex::new(1);
        let id = {
            let mut id = ID.lock();
            let next = id.checked_add(1).unwrap();
            *id = next;
            next
        };
        Self {
            entities: Entities::default(),
            archetypes: ArchetypeSet::new(),
            bundle_to_archetype: HashMap::default(),
            insert_edges: HashMap::default(),
            remove_edges: HashMap::default(),
            id,
        }
    }

    /// Create an entity with certain components
    ///
    /// Returns the ID of the newly created entity.
    ///
    /// Arguments can be tuples, structs annotated with [`#[derive(Bundle)]`](macro@Bundle), or the
    /// result of calling [`build`](crate::EntityBuilder::build) on an
    /// [`EntityBuilder`](crate::EntityBuilder), which is useful if the set of components isn't
    /// statically known. To spawn an entity with only one component, use a one-element tuple like
    /// `(x,)`.
    ///
    /// Any type that satisfies `Send + Sync + 'static` can be used as a component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, "abc"));
    /// let b = world.spawn((456, true));
    /// ```
    pub fn spawn(&mut self, components: impl DynamicBundle) -> Entity {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let entity = self.entities.alloc();

        self.spawn_inner(entity, components);

        entity
    }

    /// Create an entity with certain components and a specific [`Entity`] handle.
    ///
    /// See [`spawn`](Self::spawn).
    ///
    /// Despawns any existing entity with the same [`Entity::id`].
    ///
    /// Useful for easy handle-preserving deserialization. Be cautious resurrecting old `Entity`
    /// handles in already-populated worlds as it vastly increases the likelihood of collisions.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, "abc"));
    /// let b = world.spawn((456, true));
    /// world.despawn(a);
    /// assert!(!world.contains(a));
    /// // all previous Entity values pointing to 'a' will be live again, instead pointing to the new entity.
    /// world.spawn_at(a, (789, "ABC"));
    /// assert!(world.contains(a));
    /// ```
    pub fn spawn_at(&mut self, handle: Entity, components: impl DynamicBundle) {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let loc = self.entities.alloc_at(handle);
        if let Some(loc) = loc {
            if let Some(moved) = unsafe {
                self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true)
            } {
                self.entities.meta[moved as usize].location.index = loc.index;
            }
        }

        self.spawn_inner(handle, components);
    }

    fn spawn_inner(&mut self, entity: Entity, components: impl DynamicBundle) {
        let archetype_id = match components.key() {
            Some(k) => {
                let archetypes = &mut self.archetypes;
                *self.bundle_to_archetype.entry(k).or_insert_with(|| {
                    components.with_ids(|ids| archetypes.get(ids, || components.type_info()))
                })
            }
            None => components.with_ids(|ids| self.archetypes.get(ids, || components.type_info())),
        };

        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        unsafe {
            let index = archetype.allocate(entity.id);
            components.put(|ptr, ty| {
                archetype.put_dynamic(ptr, ty.id(), ty.layout().size(), index);
            });
            self.entities.meta[entity.id as usize].location = Location {
                archetype: archetype_id,
                index,
            };
        }
    }

    /// Efficiently spawn a large number of entities with the same statically-typed components
    ///
    /// Faster than calling [`spawn`](Self::spawn) repeatedly with the same components, but requires
    /// that component types are known at compile time.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let entities = world.spawn_batch((0..1_000).map(|i| (i, "abc"))).collect::<Vec<_>>();
    /// for i in 0..1_000 {
    ///     assert_eq!(*world.get::<&i32>(entities[i]).unwrap(), i as i32);
    /// }
    /// ```
    pub fn spawn_batch<I>(&mut self, iter: I) -> SpawnBatchIter<'_, I::IntoIter>
    where
        I: IntoIterator,
        I::Item: Bundle + 'static,
    {
        // Ensure all entity allocations are accounted for so `self.entities` can realloc if
        // necessary
        self.flush();

        let iter = iter.into_iter();
        let (lower, upper) = iter.size_hint();
        let archetype_id = self.reserve_inner::<I::Item>(
            u32::try_from(upper.unwrap_or(lower)).expect("iterator too large"),
        );

        SpawnBatchIter {
            inner: iter,
            entities: &mut self.entities,
            archetype_id,
            archetype: &mut self.archetypes.archetypes[archetype_id as usize],
        }
    }

    /// Super-efficiently spawn the contents of a [`ColumnBatch`]
    ///
    /// The fastest, but most specialized, way to spawn large numbers of entities. Useful for high
    /// performance deserialization. Supports dynamic component types.
    pub fn spawn_column_batch(&mut self, batch: ColumnBatch) -> SpawnColumnBatchIter<'_> {
        self.flush();

        let archetype = batch.0;
        let entity_count = archetype.len();
        // Store component data
        let (archetype_id, base) = self.archetypes.insert_batch(archetype);

        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        let id_alloc = self.entities.alloc_many(entity_count, archetype_id, base);

        // Fix up entity IDs
        let mut id_alloc_clone = id_alloc.clone();
        let mut index = base as usize;
        while let Some(id) = id_alloc_clone.next(&self.entities) {
            archetype.set_entity_id(index, id);
            index += 1;
        }

        // Return iterator over new IDs
        SpawnColumnBatchIter {
            pending_end: id_alloc.pending_end,
            id_alloc,
            entities: &mut self.entities,
        }
    }

    /// Hybrid of [`spawn_column_batch`](Self::spawn_column_batch) and [`spawn_at`](Self::spawn_at)
    pub fn spawn_column_batch_at(&mut self, handles: &[Entity], batch: ColumnBatch) {
        let archetype = batch.0;
        assert_eq!(
            handles.len(),
            archetype.len() as usize,
            "number of entity IDs {} must match number of entities {}",
            handles.len(),
            archetype.len()
        );

        // Drop components of entities that will be replaced
        for &handle in handles {
            let loc = self.entities.alloc_at(handle);
            if let Some(loc) = loc {
                if let Some(moved) = unsafe {
                    self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true)
                } {
                    self.entities.meta[moved as usize].location.index = loc.index;
                }
            }
        }

        // Store components
        let (archetype_id, base) = self.archetypes.insert_batch(archetype);

        // Fix up entity IDs
        let archetype = &mut self.archetypes.archetypes[archetype_id as usize];
        for (&handle, index) in handles.iter().zip(base as usize..) {
            archetype.set_entity_id(index, handle.id());
            self.entities.meta[handle.id() as usize].location = Location {
                archetype: archetype_id,
                index: index as u32,
            };
        }
    }

    /// Allocate many entities ID concurrently
    ///
    /// Unlike [`spawn`](Self::spawn), this can be called concurrently with other operations on the
    /// [`World`] such as queries, but does not immediately create the entities. Reserved entities
    /// are not visible to queries or world iteration, but can be otherwise operated on
    /// freely. Operations that add or remove components or entities, such as `insert` or `despawn`,
    /// will cause all outstanding reserved entities to become real entities before proceeding. This
    /// can also be done explicitly by calling [`flush`](Self::flush).
    ///
    /// Useful for reserving an ID that will later have components attached to it with `insert`.
    pub fn reserve_entities(&self, count: u32) -> ReserveEntitiesIterator {
        self.entities.reserve_entities(count)
    }

    /// Allocate an entity ID concurrently
    ///
    /// See [`reserve_entities`](Self::reserve_entities).
    pub fn reserve_entity(&self) -> Entity {
        self.entities.reserve_entity()
    }

    /// Destroy an entity and all its components
    ///
    /// See also [`take`](Self::take).
    pub fn despawn(&mut self, entity: Entity) -> Result<(), NoSuchEntity> {
        self.flush();
        let loc = self.entities.free(entity)?;
        if let Some(moved) =
            unsafe { self.archetypes.archetypes[loc.archetype as usize].remove(loc.index, true) }
        {
            self.entities.meta[moved as usize].location.index = loc.index;
        }
        Ok(())
    }

    /// Ensure at least `additional` entities with exact components `T` can be spawned without reallocating
    pub fn reserve<T: Bundle + 'static>(&mut self, additional: u32) {
        self.reserve_inner::<T>(additional);
    }

    fn reserve_inner<T: Bundle + 'static>(&mut self, additional: u32) -> u32 {
        self.flush();
        self.entities.reserve(additional);

        let archetypes = &mut self.archetypes;
        let archetype_id = *self
            .bundle_to_archetype
            .entry(TypeId::of::<T>())
            .or_insert_with(|| {
                T::with_static_ids(|ids| {
                    archetypes.get(ids, || T::with_static_type_info(|info| info.to_vec()))
                })
            });

        self.archetypes.archetypes[archetype_id as usize].reserve(additional);
        archetype_id
    }

    /// Despawn all entities
    ///
    /// Preserves allocated storage for reuse but clears metadata so that [`Entity`] values will repeat (in contrast to [`despawn`][Self::despawn]).
    pub fn clear(&mut self) {
        for x in &mut self.archetypes.archetypes {
            x.clear();
        }
        self.entities.clear();
    }

    /// Whether `entity` still exists
    pub fn contains(&self, entity: Entity) -> bool {
        self.entities.contains(entity)
    }

    /// Efficiently iterate over all entities that have certain components, using dynamic borrow
    /// checking
    ///
    /// Prefer [`query_mut`](Self::query_mut) when concurrent access to the [`World`] is not required.
    ///
    /// Calling `iter` on the returned value yields `(Entity, Q)` tuples, where `Q` is some query
    /// type. A query type is any type for which an implementation of [`Query`] exists, e.g. `&T`,
    /// `&mut T`, a tuple of query types, or an `Option` wrapping a query type, where `T` is any
    /// component type. Components queried with `&mut` must only appear once. Entities which do not
    /// have a component type referenced outside of an `Option` will be skipped.
    ///
    /// Entities are yielded in arbitrary order.
    ///
    /// The returned [`QueryBorrow`] can be further transformed with combinator methods; see its
    /// documentation for details.
    ///
    /// Iterating a query will panic if it would violate an existing unique reference or construct
    /// an invalid unique reference. This occurs when two simultaneously-active queries could expose
    /// the same entity. Simultaneous queries can access the same component type if and only if the
    /// world contains no entities that have all components required by both queries, assuming no
    /// other component borrows are outstanding.
    ///
    /// Iterating a query yields references with lifetimes bound to the [`QueryBorrow`] returned
    /// here. To ensure those are invalidated, the return value of this method must be dropped for
    /// its dynamic borrows from the world to be released. Similarly, lifetime rules ensure that
    /// references obtained from a query cannot outlive the [`QueryBorrow`].
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// let b = world.spawn((456, false));
    /// let c = world.spawn((42, "def"));
    /// let entities = world.query::<(&i32, &bool)>()
    ///     .iter()
    ///     .map(|(e, (&i, &b))| (e, i, b)) // Copy out of the world
    ///     .collect::<Vec<_>>();
    /// assert_eq!(entities.len(), 2);
    /// assert!(entities.contains(&(a, 123, true)));
    /// assert!(entities.contains(&(b, 456, false)));
    /// ```
    pub fn query<Q: Query>(&self) -> QueryBorrow<'_, Q> {
        QueryBorrow::new(self)
    }

    /// Query a uniquely borrowed world
    ///
    /// Like [`query`](Self::query), but faster because dynamic borrow checks can be skipped. Note
    /// that, unlike [`query`](Self::query), this returns an `IntoIterator` which can be passed
    /// directly to a `for` loop.
    pub fn query_mut<Q: Query>(&mut self) -> QueryMut<'_, Q> {
        QueryMut::new(self)
    }

    pub(crate) fn memo(&self) -> (u64, u32) {
        (self.id, self.archetypes.generation())
    }

    #[inline(always)]
    pub(crate) fn entities_meta(&self) -> &[EntityMeta] {
        &self.entities.meta
    }

    #[inline(always)]
    pub(crate) fn archetypes_inner(&self) -> &[Archetype] {
        &self.archetypes.archetypes
    }

    /// Prepare a query against a single entity, using dynamic borrow checking
    ///
    /// Prefer [`query_one_mut`](Self::query_one_mut) when concurrent access to the [`World`] is not
    /// required.
    ///
    /// Call [`get`](QueryOne::get) on the resulting [`QueryOne`] to actually execute the query. The
    /// [`QueryOne`] value is responsible for releasing the dynamically-checked borrow made by
    /// `get`, so it can't be dropped while references returned by `get` are live.
    ///
    /// Handy for accessing multiple components simultaneously.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn((123, true, "abc"));
    /// // The returned query must outlive the borrow made by `get`
    /// let mut query = world.query_one::<(&mut i32, &bool)>(a).unwrap();
    /// let (number, flag) = query.get().unwrap();
    /// if *flag { *number *= 2; }
    /// assert_eq!(*number, 246);
    /// ```
    pub fn query_one<Q: Query>(&self, entity: Entity) -> Result<QueryOne<'_, Q>, NoSuchEntity> {
        let loc = self.entities.get(entity)?;
        Ok(unsafe {
            QueryOne::new(
                &self.archetypes.archetypes[loc.archetype as usize],
                loc.index,
            )
        })
    }

    /// Query a single entity in a uniquely borrow world
    ///
    /// Like [`query_one`](Self::query_one), but faster because dynamic borrow checks can be
    /// skipped. Note that, unlike [`query_one`](Self::query_one), on success this returns the
    /// query's results directly.
    pub fn query_one_mut<Q: Query>(
        &mut self,
        entity: Entity,
    ) -> Result<Q::Item<'_>, QueryOneError> {
        assert_borrow::<Q>();

        let loc = self.entities.get(entity)?;
        let archetype = &self.archetypes.archetypes[loc.archetype as usize];
        let state = Q::Fetch::prepare(archetype).ok_or(QueryOneError::Unsatisfied)?;
        let fetch = Q::Fetch::execute(archetype, state);
        unsafe { Ok(Q::get(&fetch, loc.index as usize)) }
    }

    /// Short-hand for [`entity`](Self::entity) followed by [`EntityRef::get`]
    pub fn get<'a, T: ComponentRef<'a>>(
        &'a self,
        entity: Entity,
    ) -> Result<T::Ref, ComponentError> {
        Ok(self
            .entity(entity)?
            .get::<T>()
            .ok_or_else(MissingComponent::new::<T::Component>)?)
    }

    /// Short-hand for [`entity`](Self::entity) followed by [`EntityRef::satisfies`]
    pub fn satisfies<Q: Query>(&self, entity: Entity) -> Result<bool, NoSuchEntity> {
        Ok(self.entity(entity)?.satisfies::<Q>())
    }

    /// Access an entity regardless of its component types
    ///
    /// Does not immediately borrow any component.
    pub fn entity(&self, entity: Entity) -> Result<EntityRef<'_>, NoSuchEntity> {
        let loc = self.entities.get(entity)?;
        unsafe {
            Ok(EntityRef::new(
                &self.archetypes.archetypes[loc.archetype as usize],
                entity,
                loc.index,
            ))
        }
    }

    /// Given an id obtained from [`Entity::id`], reconstruct the still-live [`Entity`].
    ///
    /// # Safety
    ///
    /// `id` must correspond to a currently live [`Entity`]. A despawned or never-allocated `id`
    /// will produce undefined behavior.
    pub unsafe fn find_entity_from_id(&self, id: u32) -> Entity {
        self.entities.resolve_unknown_gen(id)
    }

    /// Iterate over all entities in the world
    ///
    /// Entities are yielded in arbitrary order. Prefer [`query`](Self::query) for better
    /// performance when components will be accessed in predictable patterns.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let a = world.spawn(());
    /// let b = world.spawn(());
    /// let ids = world.iter().map(|entity_ref| entity_ref.entity()).collect::<Vec<_>>();
    /// assert_eq!(ids.len(), 2);
    /// assert!(ids.contains(&a));
    /// assert!(ids.contains(&b));
    /// ```
    pub fn iter(&self) -> Iter<'_> {
        Iter::new(&self.archetypes.archetypes, &self.entities)
    }

    /// Add `components` to `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. If an entity
    /// already has a component of a certain type, it is dropped and replaced.
    ///
    /// When inserting a single component, see [`insert_one`](Self::insert_one) for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc"));
    /// world.insert(e, (456, true));
    /// assert_eq!(*world.get::<&i32>(e).unwrap(), 456);
    /// assert_eq!(*world.get::<&bool>(e).unwrap(), true);
    /// ```
    pub fn insert(
        &mut self,
        entity: Entity,
        components: impl DynamicBundle,
    ) -> Result<(), NoSuchEntity> {
        self.flush();

        let loc = self.entities.get(entity)?;
        self.insert_inner(entity, components, loc.archetype, loc);
        Ok(())
    }

    /// The implementation backing [`insert`](Self::insert) exposed so that it can also be used by [`exchange`](Self::exchange).
    ///
    /// Note that `graph_origin` is always equal to `loc.archetype` during insertion. Only for exchange, `graph_origin` identifies
    /// the intermediate archetype which would be reached after removal and before insertion even though
    /// the actual component data still resides in `loc.archetype`.
    fn insert_inner(
        &mut self,
        entity: Entity,
        components: impl DynamicBundle,
        graph_origin: u32,
        loc: Location,
    ) {
        let target_storage;
        let target = match components.key() {
            None => {
                target_storage = self.archetypes.get_insert_target(graph_origin, &components);
                &target_storage
            }
            Some(key) => match self.insert_edges.entry((graph_origin, key)) {
                Entry::Occupied(entry) => entry.into_mut(),
                Entry::Vacant(entry) => {
                    let target = self.archetypes.get_insert_target(graph_origin, &components);
                    entry.insert(target)
                }
            },
        };

        let source_arch = &mut self.archetypes.archetypes[loc.archetype as usize];
        unsafe {
            // Drop the components we're overwriting
            for &ty in &target.replaced {
                let ptr = source_arch
                    .get_dynamic(ty.id(), ty.layout().size(), loc.index)
                    .unwrap();
                ty.drop(ptr.as_ptr());
            }

            if target.index == loc.archetype {
                // Update components in the current archetype
                let arch = &mut self.archetypes.archetypes[loc.archetype as usize];
                components.put(|ptr, ty| {
                    arch.put_dynamic(ptr, ty.id(), ty.layout().size(), loc.index);
                });
                return;
            }

            let (source_arch, target_arch) = index2(
                &mut self.archetypes.archetypes,
                loc.archetype as usize,
                target.index as usize,
            );

            // Allocate storage in the archetype and update the entity's location to address it
            let target_index = target_arch.allocate(entity.id);
            let meta = &mut self.entities.meta[entity.id as usize];
            meta.location.archetype = target.index;
            meta.location.index = target_index;

            // Move the new components
            components.put(|ptr, ty| {
                target_arch.put_dynamic(ptr, ty.id(), ty.layout().size(), target_index);
            });

            // Move the components we're keeping
            for &ty in &target.retained {
                let src = source_arch
                    .get_dynamic(ty.id(), ty.layout().size(), loc.index)
                    .unwrap();
                target_arch.put_dynamic(src.as_ptr(), ty.id(), ty.layout().size(), target_index)
            }

            // Free storage in the old archetype
            if let Some(moved) = source_arch.remove(loc.index, false) {
                self.entities.meta[moved as usize].location.index = loc.index;
            }
        }
    }

    /// Add `component` to `entity`
    ///
    /// See [`insert`](Self::insert).
    pub fn insert_one(
        &mut self,
        entity: Entity,
        component: impl Component,
    ) -> Result<(), NoSuchEntity> {
        self.insert(entity, (component,))
    }

    /// Remove components from `entity`
    ///
    /// Computational cost is proportional to the number of components `entity` has. The entity
    /// itself is not removed, even if no components remain; use `despawn` for that. If any
    /// component in `T` is not present in `entity`, no components are removed and an error is
    /// returned.
    ///
    /// When removing a single component, see [`remove_one`](Self::remove_one) for convenience.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let e = world.spawn((123, "abc", true));
    /// assert_eq!(world.remove::<(i32, &str)>(e), Ok((123, "abc")));
    /// assert!(world.get::<&i32>(e).is_err());
    /// assert!(world.get::<&&str>(e).is_err());
    /// assert_eq!(*world.get::<&bool>(e).unwrap(), true);
    /// ```
    pub fn remove<T: Bundle + 'static>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        self.flush();

        // Gather current metadata
        let loc = self.entities.get_mut(entity)?;
        let old_index = loc.index;
        let source_arch = &self.archetypes.archetypes[loc.archetype as usize];

        // Move out of the source archetype, or bail out if a component is missing
        let bundle = unsafe {
            T::get(|ty| source_arch.get_dynamic(ty.id(), ty.layout().size(), old_index))?
        };

        // Find the target archetype ID
        let target =
            Self::remove_target::<T>(&mut self.archetypes, &mut self.remove_edges, loc.archetype);

        // Store components to the target archetype and update metadata
        if loc.archetype != target {
            // If we actually removed any components, the entity needs to be moved into a new archetype
            let (source_arch, target_arch) = index2(
                &mut self.archetypes.archetypes,
                loc.archetype as usize,
                target as usize,
            );
            let target_index = unsafe { target_arch.allocate(entity.id) };
            loc.archetype = target;
            loc.index = target_index;
            if let Some(moved) = unsafe {
                source_arch.move_to(old_index, |src, ty, size| {
                    // Only move the components present in the target archetype, i.e. the non-removed ones.
                    if let Some(dst) = target_arch.get_dynamic(ty, size, target_index) {
                        ptr::copy_nonoverlapping(src, dst.as_ptr(), size);
                    }
                })
            } {
                self.entities.meta[moved as usize].location.index = old_index;
            }
        }

        Ok(bundle)
    }

    fn remove_target<T: Bundle + 'static>(
        archetypes: &mut ArchetypeSet,
        remove_edges: &mut IndexTypeIdMap<u32>,
        old_archetype: u32,
    ) -> u32 {
        match remove_edges.entry((old_archetype, TypeId::of::<T>())) {
            Entry::Occupied(entry) => *entry.into_mut(),
            Entry::Vacant(entry) => {
                let info = T::with_static_type_info(|removed| {
                    archetypes.archetypes[old_archetype as usize]
                        .types()
                        .iter()
                        .filter(|x| removed.binary_search(x).is_err())
                        .cloned()
                        .collect::<Vec<_>>()
                });
                let elements = info.iter().map(|x| x.id()).collect::<Box<_>>();
                let index = archetypes.get(&*elements, move || info);
                *entry.insert(index)
            }
        }
    }

    /// Remove the `T` component from `entity`
    ///
    /// See [`remove`](Self::remove).
    pub fn remove_one<T: Component>(&mut self, entity: Entity) -> Result<T, ComponentError> {
        self.remove::<(T,)>(entity).map(|(x,)| x)
    }

    /// Remove `S` components from `entity` and then add `components`
    ///
    /// This has the same effect as calling [`remove::<S>`](Self::remove) and then [`insert::<T>`](Self::insert),
    /// but is more efficient as the intermediate archetype after removal but before insertion is skipped.
    pub fn exchange<S: Bundle + 'static, T: DynamicBundle>(
        &mut self,
        entity: Entity,
        components: T,
    ) -> Result<S, ComponentError> {
        self.flush();

        // Gather current metadata
        let loc = self.entities.get(entity)?;

        // Move out of the source archetype, or bail out if a component is missing
        let source_arch = &self.archetypes.archetypes[loc.archetype as usize];

        let bundle = unsafe {
            S::get(|ty| source_arch.get_dynamic(ty.id(), ty.layout().size(), loc.index))?
        };

        // Find the intermediate archetype ID
        let intermediate =
            Self::remove_target::<S>(&mut self.archetypes, &mut self.remove_edges, loc.archetype);

        self.insert_inner(entity, components, intermediate, loc);

        Ok(bundle)
    }

    /// Remove the `S` component from `entity` and then add `component`
    ///
    /// See [`exchange`](Self::exchange).
    pub fn exchange_one<S: Component, T: Component>(
        &mut self,
        entity: Entity,
        component: T,
    ) -> Result<S, ComponentError> {
        self.exchange::<(S,), (T,)>(entity, (component,))
            .map(|(x,)| x)
    }

    /// Borrow a single component of `entity` without safety checks
    ///
    /// `T` must be a shared or unique reference to a component type.
    ///
    /// Should only be used as a building block for safe abstractions.
    ///
    /// # Safety
    ///
    /// `entity` must have been previously obtained from this [`World`], and no unique borrow of the
    /// same component of `entity` may be live simultaneous to the returned reference.
    pub unsafe fn get_unchecked<'a, T: ComponentRef<'a>>(
        &'a self,
        entity: Entity,
    ) -> Result<T, ComponentError> {
        let loc = self.entities.get(entity)?;
        let archetype = &self.archetypes.archetypes[loc.archetype as usize];
        let state = archetype
            .get_state::<T::Component>()
            .ok_or_else(MissingComponent::new::<T::Component>)?;
        Ok(T::from_raw(
            archetype
                .get_base::<T::Component>(state)
                .as_ptr()
                .add(loc.index as usize),
        ))
    }

    /// Convert all reserved entities into empty entities that can be iterated and accessed
    ///
    /// Invoked implicitly by operations that add or remove components or entities, i.e. all
    /// variations of `spawn`, `despawn`, `insert`, and `remove`.
    pub fn flush(&mut self) {
        let arch = &mut self.archetypes.archetypes[0];
        self.entities
            .flush(|id, location| location.index = unsafe { arch.allocate(id) });
    }

    /// Inspect the archetypes that entities are organized into
    ///
    /// Useful for dynamically scheduling concurrent queries by checking borrows in advance, and for
    /// efficient serialization.
    #[inline(always)]
    pub fn archetypes(&self) -> impl ExactSizeIterator<Item = &'_ Archetype> + '_ {
        self.archetypes_inner().iter()
    }

    /// Despawn `entity`, yielding a [`DynamicBundle`] of its components
    ///
    /// Useful for moving entities between worlds.
    pub fn take(&mut self, entity: Entity) -> Result<TakenEntity<'_>, NoSuchEntity> {
        self.flush();
        let loc = self.entities.get(entity)?;
        let archetype = &mut self.archetypes.archetypes[loc.archetype as usize];
        unsafe {
            Ok(TakenEntity::new(
                &mut self.entities,
                entity,
                archetype,
                loc.index,
            ))
        }
    }

    /// Returns a distinct value after `archetypes` is changed
    ///
    /// Store the current value after deriving information from [`archetypes`](Self::archetypes),
    /// then check whether the value returned by this function differs before attempting an
    /// operation that relies on its correctness. Useful for determining whether e.g. a concurrent
    /// query execution plan is still correct.
    ///
    /// The generation may be, but is not necessarily, changed as a result of adding or removing any
    /// entity or component.
    ///
    /// # Example
    /// ```
    /// # use hecs::*;
    /// let mut world = World::new();
    /// let initial_gen = world.archetypes_generation();
    /// world.spawn((123, "abc"));
    /// assert_ne!(initial_gen, world.archetypes_generation());
    /// ```
    pub fn archetypes_generation(&self) -> ArchetypesGeneration {
        ArchetypesGeneration(self.archetypes.generation())
    }

    /// Number of currently live entities
    #[inline]
    pub fn len(&self) -> u32 {
        self.entities.len()
    }

    /// Whether no entities are live
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }
}

unsafe impl Send for World {}
unsafe impl Sync for World {}

impl Default for World {
    fn default() -> Self {
        Self::new()
    }
}

impl<'a> IntoIterator for &'a World {
    type IntoIter = Iter<'a>;
    type Item = EntityRef<'a>;
    fn into_iter(self) -> Iter<'a> {
        self.iter()
    }
}

fn index2<T>(x: &mut [T], i: usize, j: usize) -> (&mut T, &mut T) {
    assert!(i != j);
    assert!(i < x.len());
    assert!(j < x.len());
    let ptr = x.as_mut_ptr();
    unsafe { (&mut *ptr.add(i), &mut *ptr.add(j)) }
}

/// Errors that arise when accessing components
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum ComponentError {
    /// The entity was already despawned
    NoSuchEntity,
    /// The entity did not have a requested component
    MissingComponent(MissingComponent),
}

#[cfg(feature = "std")]
impl Error for ComponentError {}

impl fmt::Display for ComponentError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use ComponentError::*;
        match *self {
            NoSuchEntity => f.write_str("no such entity"),
            MissingComponent(ref x) => x.fmt(f),
        }
    }
}

impl From<NoSuchEntity> for ComponentError {
    fn from(NoSuchEntity: NoSuchEntity) -> Self {
        ComponentError::NoSuchEntity
    }
}

impl From<MissingComponent> for ComponentError {
    fn from(x: MissingComponent) -> Self {
        ComponentError::MissingComponent(x)
    }
}

/// Errors that arise when querying a single entity
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub enum QueryOneError {
    /// The entity was already despawned
    NoSuchEntity,
    /// The entity exists but does not satisfy the query
    Unsatisfied,
}

#[cfg(feature = "std")]
impl Error for QueryOneError {}

impl fmt::Display for QueryOneError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        use QueryOneError::*;
        match *self {
            NoSuchEntity => f.write_str("no such entity"),
            Unsatisfied => f.write_str("unsatisfied"),
        }
    }
}

impl From<NoSuchEntity> for QueryOneError {
    fn from(NoSuchEntity: NoSuchEntity) -> Self {
        QueryOneError::NoSuchEntity
    }
}

/// Types that can be components, implemented automatically for all `Send + Sync + 'static` types
///
/// This is just a convenient shorthand for `Send + Sync + 'static`, and never needs to be
/// implemented manually.
pub trait Component: Send + Sync + 'static {}
impl<T: Send + Sync + 'static> Component for T {}

/// Iterator over all of a world's entities
pub struct Iter<'a> {
    archetypes: core::slice::Iter<'a, Archetype>,
    entities: &'a Entities,
    current: Option<&'a Archetype>,
    index: u32,
}

impl<'a> Iter<'a> {
    fn new(archetypes: &'a [Archetype], entities: &'a Entities) -> Self {
        Self {
            archetypes: archetypes.iter(),
            entities,
            current: None,
            index: 0,
        }
    }
}

unsafe impl Send for Iter<'_> {}
unsafe impl Sync for Iter<'_> {}

impl<'a> Iterator for Iter<'a> {
    type Item = EntityRef<'a>;
    fn next(&mut self) -> Option<Self::Item> {
        loop {
            match self.current {
                None => {
                    self.current = Some(self.archetypes.next()?);
                    self.index = 0;
                }
                Some(current) => {
                    if self.index == current.len() {
                        self.current = None;
                        continue;
                    }
                    let index = self.index;
                    self.index += 1;
                    let id = current.entity_id(index);
                    return Some(unsafe {
                        EntityRef::new(
                            current,
                            Entity {
                                id,
                                generation: self.entities.meta[id as usize].generation,
                            },
                            index,
                        )
                    });
                }
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

impl ExactSizeIterator for Iter<'_> {
    #[inline]
    fn len(&self) -> usize {
        self.entities.len() as usize
    }
}

impl<A: DynamicBundle> Extend<A> for World {
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = A>,
    {
        for x in iter {
            self.spawn(x);
        }
    }
}

impl<A: DynamicBundle> core::iter::FromIterator<A> for World {
    fn from_iter<I: IntoIterator<Item = A>>(iter: I) -> Self {
        let mut world = World::new();
        world.extend(iter);
        world
    }
}

/// Determines freshness of information derived from [`World::archetypes`]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct ArchetypesGeneration(u32);

/// Entity IDs created by [`World::spawn_batch`]
pub struct SpawnBatchIter<'a, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    inner: I,
    entities: &'a mut Entities,
    archetype_id: u32,
    archetype: &'a mut Archetype,
}

impl<I> Drop for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    fn drop(&mut self) {
        for _ in self {}
    }
}

impl<I> Iterator for SpawnBatchIter<'_, I>
where
    I: Iterator,
    I::Item: Bundle,
{
    type Item = Entity;

    fn next(&mut self) -> Option<Entity> {
        let components = self.inner.next()?;
        let entity = self.entities.alloc();
        let index = unsafe { self.archetype.allocate(entity.id) };
        unsafe {
            components.put(|ptr, ty| {
                self.archetype
                    .put_dynamic(ptr, ty.id(), ty.layout().size(), index);
            });
        }
        self.entities.meta[entity.id as usize].location = Location {
            archetype: self.archetype_id,
            index,
        };
        Some(entity)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.inner.size_hint()
    }
}

impl<I, T> ExactSizeIterator for SpawnBatchIter<'_, I>
where
    I: ExactSizeIterator<Item = T>,
    T: Bundle,
{
    fn len(&self) -> usize {
        self.inner.len()
    }
}

/// Iterator over [`Entity`]s spawned by [`World::spawn_column_batch()`]
pub struct SpawnColumnBatchIter<'a> {
    pending_end: usize,
    id_alloc: crate::entities::AllocManyState,
    entities: &'a mut Entities,
}

impl Iterator for SpawnColumnBatchIter<'_> {
    type Item = Entity;

    fn next(&mut self) -> Option<Entity> {
        let id = self.id_alloc.next(self.entities)?;
        Some(unsafe { self.entities.resolve_unknown_gen(id) })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}

impl ExactSizeIterator for SpawnColumnBatchIter<'_> {
    fn len(&self) -> usize {
        self.id_alloc.len(self.entities)
    }
}

impl Drop for SpawnColumnBatchIter<'_> {
    fn drop(&mut self) {
        // Consume used freelist entries
        self.entities.finish_alloc_many(self.pending_end);
    }
}

struct ArchetypeSet {
    /// Maps sorted component type sets to archetypes
    index: HashMap<Box<[TypeId]>, u32>,
    archetypes: Vec<Archetype>,
}

impl ArchetypeSet {
    fn new() -> Self {
        // `flush` assumes archetype 0 always exists, representing entities with no components.
        Self {
            index: Some((Box::default(), 0)).into_iter().collect(),
            archetypes: vec![Archetype::new(Vec::new())],
        }
    }

    /// Find the archetype ID that has exactly `components`
    fn get<T: Borrow<[TypeId]> + Into<Box<[TypeId]>>>(
        &mut self,
        components: T,
        info: impl FnOnce() -> Vec<TypeInfo>,
    ) -> u32 {
        self.index
            .get(components.borrow())
            .copied()
            .unwrap_or_else(|| self.insert(components.into(), info()))
    }

    fn insert(&mut self, components: Box<[TypeId]>, info: Vec<TypeInfo>) -> u32 {
        let x = self.archetypes.len() as u32;
        self.archetypes.push(Archetype::new(info));
        let old = self.index.insert(components, x);
        debug_assert!(old.is_none(), "inserted duplicate archetype");
        x
    }

    /// Returns archetype ID and starting location index
    fn insert_batch(&mut self, archetype: Archetype) -> (u32, u32) {
        let ids = archetype
            .types()
            .iter()
            .map(|info| info.id())
            .collect::<Box<_>>();

        match self.index.entry(ids) {
            Entry::Occupied(x) => {
                // Duplicate of existing archetype
                let existing = &mut self.archetypes[*x.get() as usize];
                let base = existing.len();
                unsafe {
                    existing.merge(archetype);
                }
                (*x.get(), base)
            }
            Entry::Vacant(x) => {
                // Brand new archetype
                let id = self.archetypes.len() as u32;
                self.archetypes.push(archetype);
                x.insert(id);
                (id, 0)
            }
        }
    }

    fn generation(&self) -> u32 {
        self.archetypes.len() as u32
    }

    fn get_insert_target(&mut self, src: u32, components: &impl DynamicBundle) -> InsertTarget {
        // Assemble Vec<TypeInfo> for the final entity
        let arch = &mut self.archetypes[src as usize];
        let mut info = arch.types().to_vec();
        let mut replaced = Vec::new(); // Elements in both archetype.types() and components.type_info()
        let mut retained = Vec::new(); // Elements in archetype.types() but not components.type_info()

        // Because both `components.type_info()` and `arch.types()` are
        // ordered, we can identify elements in one but not the other efficiently with parallel
        // iteration.
        let mut src_ty = 0;
        for ty in components.type_info() {
            while src_ty < arch.types().len() && arch.types()[src_ty] <= ty {
                if arch.types()[src_ty] != ty {
                    retained.push(arch.types()[src_ty]);
                }
                src_ty += 1;
            }
            if arch.has_dynamic(ty.id()) {
                replaced.push(ty);
            } else {
                info.push(ty);
            }
        }
        info.sort_unstable();
        retained.extend_from_slice(&arch.types()[src_ty..]);

        // Find the archetype it'll live in
        let elements = info.iter().map(|x| x.id()).collect::<Box<_>>();
        let index = self.get(elements, move || info);
        InsertTarget {
            replaced,
            retained,
            index,
        }
    }
}

/// Metadata cached for inserting components into entities from this archetype
struct InsertTarget {
    /// Components from the current archetype that are replaced by the insert
    replaced: Vec<TypeInfo>,
    /// Components from the current archetype that are moved by the insert
    retained: Vec<TypeInfo>,
    /// ID of the target archetype
    index: u32,
}

type IndexTypeIdMap<V> = HashMap<(u32, TypeId), V, BuildHasherDefault<IndexTypeIdHasher>>;

#[derive(Default)]
struct IndexTypeIdHasher(u64);

impl Hasher for IndexTypeIdHasher {
    fn write_u32(&mut self, index: u32) {
        self.0 ^= u64::from(index);
    }

    fn write_u64(&mut self, type_id: u64) {
        self.0 ^= type_id;
    }

    fn write(&mut self, _bytes: &[u8]) {
        unreachable!()
    }

    fn finish(&self) -> u64 {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn reuse_empty() {
        let mut world = World::new();
        let a = world.spawn(());
        world.despawn(a).unwrap();
        let b = world.spawn(());
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
    }

    #[test]
    fn clear_repeats_entity_id() {
        let mut world = World::new();
        let a = world.spawn(());
        world.clear();
        let b = world.spawn(());
        assert_eq!(a.id, b.id);
        assert_eq!(a.generation, b.generation);
    }

    #[test]
    fn spawn_at() {
        let mut world = World::new();
        let a = world.spawn(());
        world.despawn(a).unwrap();
        let b = world.spawn(());
        assert!(world.contains(b));
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
        world.spawn_at(a, ());
        assert!(!world.contains(b));
        assert_eq!(b.id, a.id);
        assert_ne!(b.generation, a.generation);
    }

    #[test]
    fn reuse_populated() {
        let mut world = World::new();
        let a = world.spawn((42,));
        assert_eq!(*world.get::<&i32>(a).unwrap(), 42);
        world.despawn(a).unwrap();
        let b = world.spawn((true,));
        assert_eq!(a.id, b.id);
        assert_ne!(a.generation, b.generation);
        assert!(world.get::<&i32>(b).is_err());
        assert!(*world.get::<&bool>(b).unwrap());
    }

    #[test]
    fn remove_nothing() {
        let mut world = World::new();
        let a = world.spawn(("abc", 123));
        world.remove::<()>(a).unwrap();
    }

    #[test]
    fn bad_insert() {
        let mut world = World::new();
        assert!(world.insert_one(Entity::DANGLING, ()).is_err());
    }
}