1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

//! Data structure measurement.

#![cfg_attr(feature = "unstable", feature(hashmap_hasher))]

extern crate libc;

use libc::{c_void, size_t};
use std::borrow::Cow;
use std::cell::{Cell, RefCell};
use std::collections::{HashMap, LinkedList};
#[cfg(feature = "unstable")]
use std::collections::hash_state;
use std::hash::Hash;
use std::marker::PhantomData;
use std::mem::{size_of, transmute};
use std::net::{Ipv4Addr, Ipv6Addr};
use std::sync::Arc;
use std::rc::Rc;

extern {
    // Get the size of a heap block.
    //
    // Ideally Rust would expose a function like this in std::rt::heap, which would avoid the
    // jemalloc dependence.
    //
    // The C prototype is `je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr)`. On some
    // platforms `JEMALLOC_USABLE_SIZE_CONST` is `const` and on some it is empty. But in practice
    // this function doesn't modify the contents of the block that `ptr` points to, so we use
    // `*const c_void` here.
    fn je_malloc_usable_size(ptr: *const c_void) -> size_t;
}

// A wrapper for je_malloc_usable_size that handles `EMPTY` and returns `usize`.
pub fn heap_size_of(ptr: *const c_void) -> usize {
    if ptr == 0x01 as *const c_void {
        0
    } else {
        unsafe { je_malloc_usable_size(ptr) as usize }
    }
}

// The simplest trait for measuring the size of heap data structures. More complex traits that
// return multiple measurements -- e.g. measure text separately from images -- are also possible,
// and should be used when appropriate.
//
pub trait HeapSizeOf {
    /// Measure the size of any heap-allocated structures that hang off this value, but not the
    /// space taken up by the value itself (i.e. what size_of::<T> measures, more or less); that
    /// space is handled by the implementation of HeapSizeOf for Box<T> below.
    fn heap_size_of_children(&self) -> usize;
}

// There are two possible ways to measure the size of `self` when it's on the heap: compute it
// (with `::std::rt::heap::usable_size(::std::mem::size_of::<T>(), 0)`) or measure it directly
// using the heap allocator (with `heap_size_of`). We do the latter, for the following reasons.
//
// * The heap allocator is the true authority for the sizes of heap blocks; its measurement is
//   guaranteed to be correct. In comparison, size computations are error-prone. (For example, the
//   `rt::heap::usable_size` function used in some of Rust's non-default allocator implementations
//   underestimate the true usable size of heap blocks, which is safe in general but would cause
//   under-measurement here.)
//
// * If we measure something that isn't a heap block, we'll get a crash. This keeps us honest,
//   which is important because unsafe code is involved and this can be gotten wrong.
//
// However, in the best case, the two approaches should give the same results.
//
impl<T: HeapSizeOf> HeapSizeOf for Box<T> {
    fn heap_size_of_children(&self) -> usize {
        // Measure size of `self`.
        heap_size_of(&**self as *const T as *const c_void) + (**self).heap_size_of_children()
    }
}

impl HeapSizeOf for String {
    fn heap_size_of_children(&self) -> usize {
        heap_size_of(self.as_ptr() as *const c_void)
    }
}

impl<T: HeapSizeOf> HeapSizeOf for Option<T> {
    fn heap_size_of_children(&self) -> usize {
        match *self {
            None => 0,
            Some(ref x) => x.heap_size_of_children()
        }
    }
}

impl<'a, B: ?Sized + ToOwned> HeapSizeOf for Cow<'a, B> where B::Owned: HeapSizeOf {
    fn heap_size_of_children(&self) -> usize {
        match *self {
            Cow::Borrowed(_) => 0,
            Cow::Owned(ref b) => b.heap_size_of_children(),
        }
    }
}

impl<T: HeapSizeOf, U: HeapSizeOf> HeapSizeOf for (T, U) {
    fn heap_size_of_children(&self) -> usize {
        self.0.heap_size_of_children() + self.1.heap_size_of_children()
    }
}

impl<T: HeapSizeOf> HeapSizeOf for Arc<T> {
    fn heap_size_of_children(&self) -> usize {
        (**self).heap_size_of_children()
    }
}

impl<T: HeapSizeOf> HeapSizeOf for RefCell<T> {
    fn heap_size_of_children(&self) -> usize {
        self.borrow().heap_size_of_children()
    }
}

impl<T: HeapSizeOf + Copy> HeapSizeOf for Cell<T> {
    fn heap_size_of_children(&self) -> usize {
        self.get().heap_size_of_children()
    }
}

impl<T: HeapSizeOf> HeapSizeOf for Vec<T> {
    fn heap_size_of_children(&self) -> usize {
        heap_size_of(self.as_ptr() as *const c_void) +
            self.iter().fold(0, |n, elem| n + elem.heap_size_of_children())
    }
}

impl<T> HeapSizeOf for Vec<Rc<T>> {
    fn heap_size_of_children(&self) -> usize {
        // The fate of measuring Rc<T> is still undecided, but we still want to measure
        // the space used for storing them.
        heap_size_of(self.as_ptr() as *const c_void)
    }
}

#[cfg(feature = "unstable")]
impl<K: HeapSizeOf, V: HeapSizeOf, S> HeapSizeOf for HashMap<K, V, S>
    where K: Eq + Hash, S: hash_state::HashState {
    fn heap_size_of_children(&self) -> usize {
        //TODO(#6908) measure actual bucket memory usage instead of approximating
        let size = self.capacity() * (size_of::<V>() + size_of::<K>());
        self.iter().fold(size, |n, (key, value)| {
            n + key.heap_size_of_children() + value.heap_size_of_children()
        })
    }
}

#[cfg(not(feature = "unstable"))]
impl<K: HeapSizeOf, V: HeapSizeOf> HeapSizeOf for HashMap<K, V>
    where K: Eq + Hash {
    fn heap_size_of_children(&self) -> usize {
        //TODO(#6908) measure actual bucket memory usage instead of approximating
        let size = self.capacity() * (size_of::<V>() + size_of::<K>());
        self.iter().fold(size, |n, (key, value)| {
            n + key.heap_size_of_children() + value.heap_size_of_children()
        })
    }
}

// FIXME(njn): We can't implement HeapSizeOf accurately for LinkedList because it requires access
// to the private Node type. Eventually we'll want to add HeapSizeOf (or equivalent) to Rust
// itself. In the meantime, we use the dirty hack of transmuting LinkedList into an identical type
// (LinkedList2) and measuring that.
impl<T: HeapSizeOf> HeapSizeOf for LinkedList<T> {
    fn heap_size_of_children(&self) -> usize {
        let list2: &LinkedList2<T> = unsafe { transmute(self) };
        list2.heap_size_of_children()
    }
}

struct LinkedList2<T> {
    _length: usize,
    list_head: Link<T>,
    _list_tail: Rawlink<Node<T>>,
}

type Link<T> = Option<Box<Node<T>>>;

struct Rawlink<T> {
    _p: *mut T,
}

struct Node<T> {
    next: Link<T>,
    _prev: Rawlink<Node<T>>,
    value: T,
}

impl<T: HeapSizeOf> HeapSizeOf for Node<T> {
    // Unlike most heap_size_of_children() functions, this one does *not* measure descendents.
    // Instead, LinkedList2<T>::heap_size_of_children() handles that, so that it can use iteration
    // instead of recursion, which avoids potentially blowing the stack.
    fn heap_size_of_children(&self) -> usize {
        self.value.heap_size_of_children()
    }
}

impl<T: HeapSizeOf> HeapSizeOf for LinkedList2<T> {
    fn heap_size_of_children(&self) -> usize {
        let mut size = 0;
        let mut curr: &Link<T> = &self.list_head;
        while curr.is_some() {
            size += (*curr).heap_size_of_children();
            curr = &curr.as_ref().unwrap().next;
        }
        size
    }
}

// This is a basic sanity check. If the representation of LinkedList changes such that it becomes a
// different size to LinkedList2, this will fail at compile-time.
#[allow(dead_code)]
#[test]
#[should_panic]
fn linked_list2_check() {
    unsafe {
        transmute::<LinkedList<i32>, LinkedList2<i32>>(panic!());
    }
}

// Currently, types that implement the Drop type are larger than those that don't. Because
// LinkedList implements Drop, LinkedList2 must also so that linked_list2_check() doesn't fail.
impl<T> Drop for LinkedList2<T> {
    fn drop(&mut self) {}
}

/// For use on types defined in external crates
/// with known heap sizes.
#[macro_export]
macro_rules! known_heap_size(
    ($size:expr, $($ty:ident),+) => (
        $(
            impl $crate::HeapSizeOf for $ty {
                #[inline(always)]
                fn heap_size_of_children(&self) -> usize {
                    $size
                }
            }
        )+
    );
    ($size: expr, $($ty:ident<$($gen:ident),+>),+) => (
        $(
        impl<$($gen: $crate::HeapSizeOf),+> $crate::HeapSizeOf for $ty<$($gen),+> {
            #[inline(always)]
            fn heap_size_of_children(&self) -> usize {
                $size
            }
        }
        )+
    );
);

known_heap_size!(0, u8, u16, u32, u64, usize);
known_heap_size!(0, i8, i16, i32, i64, isize);
known_heap_size!(0, bool, f32, f64);
known_heap_size!(0, Ipv4Addr, Ipv6Addr);
known_heap_size!(0, PhantomData<T>);