1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
use core::{
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem::{self, size_of, MaybeUninit},
    slice,
};

mod datastore;
pub use datastore::*;

const SIZE_SZ: u32 = size_of::<u32>() as u32;
const AMOUNT_SZ: u32 = size_of::<u32>() as u32;
const KEY_SZ: u32 = size_of::<u32>() as u32;
const META_SZ: u32 = KEY_SZ + SIZE_SZ;

pub trait KvDataAccess {
    type Error;
    fn read(&self, address: u32, dst: &mut [u8]) -> Result<usize, Self::Error>;
    fn write(&mut self, address: u32, data: &[u8]) -> Result<usize, Self::Error>;
}

#[derive(Debug)]
pub enum KvError<StoreError> {
    Conflict,
    NotFound,
    SizeMismatch,
    Store(StoreError),
}

impl<StoreError> From<StoreError> for KvError<StoreError> {
    fn from(e: StoreError) -> Self {
        Self::Store(e)
    }
}

/// Key-Value store
///
/// Uses the following memory layout:
/// ```text
/// |------|--------|---------------|---------------|----
/// | size | amount | key|size|data | key|size|data | ...
/// |------|--------|---------------|---------------|----
/// | header        | value         | value         | ...
/// |---------------|---------------|---------------|----
/// ```
/// The "header" is 8 bytes and consists of a size, and an amount.
/// Every value has its own header which consists of a key and size totaling 8 bytes.
/// Data is dynamically sized.
pub struct Kv<K, H, S> {
    _k: PhantomData<K>,
    hasher: H,
    store: S,
}

/// Create a new Key-Value store on the heap backed by a Vec. Uses the default hasher from the stdlib.
#[cfg(feature = "std")]
impl<K: Hash> Kv<K, std::collections::hash_map::DefaultHasher, HeapDataStore> {
    pub fn new() -> Self {
        use std::hash::BuildHasher;
        Self::with_hasher_and_store(
            std::collections::hash_map::RandomState::new().build_hasher(),
            HeapDataStore::new(),
        )
    }
}

#[cfg(feature = "std")]
impl<K: Hash> Default for Kv<K, std::collections::hash_map::DefaultHasher, HeapDataStore> {
    fn default() -> Self {
        Self::new()
    }
}

impl<K, H: Clone, S: Clone> Clone for Kv<K, H, S> {
    fn clone(&self) -> Self {
        Self {
            _k: PhantomData,
            hasher: self.hasher.clone(),
            store: self.store.clone(),
        }
    }
}

impl<K: Hash, H: Hasher + Clone, S: KvDataAccess> Kv<K, H, S> {
    pub const fn with_hasher_and_store(hasher: H, store: S) -> Self {
        Self {
            _k: PhantomData,
            hasher,
            store,
        }
    }

    pub fn insert<T: 'static>(&mut self, k: K, v: T) -> Result<(), KvError<S::Error>> {
        let key = self.hash_key(&k);

        if self.find(key)?.is_some() {
            return Err(KvError::Conflict);
        }

        let size = size_of::<T>();
        let ptr = &v as *const _ as *const u8;
        let slice = unsafe { slice::from_raw_parts(ptr, size) };
        let addr = self.size()? + META_SZ;
        self.write_u32(addr, key)?;
        self.write_u32(addr + KEY_SZ, size as u32)?;
        self.write_all(addr + META_SZ, slice)?;
        self.amount_inc(1)?;
        self.size_inc(META_SZ + size as u32)?;

        mem::forget(v);

        Ok(())
    }

    pub fn update<T: 'static>(&mut self, k: K, v: T) -> Result<(), KvError<S::Error>> {
        let key = self.hash_key(&k);
        let found_addr = match self.find(key)? {
            Some(a) => a,
            None => return Err(KvError::NotFound),
        };
        let found_size = self.read_u32(found_addr + KEY_SZ)? as usize;
        let size = size_of::<T>();

        if found_size != size {
            return Err(KvError::SizeMismatch);
        }

        let ptr = &v as *const _ as *const u8;
        let slice = unsafe { slice::from_raw_parts(ptr, size) };
        self.write_all(found_addr + META_SZ, slice)?;

        Ok(())
    }

    pub fn get<T: 'static>(&mut self, k: K) -> Result<Option<T>, KvError<S::Error>> {
        let key = self.hash_key(&k);
        let found_addr = match self.find(key)? {
            Some(a) => a,
            None => return Ok(None),
        };
        let found_size = self.read_u32(found_addr + KEY_SZ)? as usize;
        let size = size_of::<T>();

        if found_size != size {
            return Err(KvError::SizeMismatch);
        }

        let mut v = MaybeUninit::<T>::uninit();
        let ptr = &mut v as *mut _ as *mut u8;
        let slice = unsafe { slice::from_raw_parts_mut(ptr, size) };

        self.read_all(found_addr + META_SZ, slice)?;

        Ok(Some(unsafe { v.assume_init() }))
    }

    /// Forget a value. Memory is not returned. This just frees up the key/type.
    pub fn forget(&mut self, k: K) -> Result<(), KvError<S::Error>> {
        let key = self.hash_key(&k);
        let addr = match self.find(key)? {
            Some(a) => a,
            None => return Err(KvError::NotFound),
        };
        let size = self.read_u32(addr + KEY_SZ)?;

        // Keep the size as it is needed
        // Key
        self.write_u32(addr, u32::MAX)?;
        // Data
        let mut ptr = addr + META_SZ;
        while ptr < addr + META_SZ + size {
            self.write_all(ptr, &[u8::MAX])?;
            ptr += 1;
        }

        Ok(())
    }

    pub fn exists(&self, k: K) -> Result<bool, KvError<S::Error>> {
        let key = self.hash_key(&k);
        Ok(self.find(key)?.is_some())
    }

    pub fn reset(&mut self) -> Result<(), KvError<S::Error>> {
        self.write_u32(0, 0)?;
        self.write_u32(4, 0)?;
        Ok(())
    }

    pub fn size(&self) -> Result<u32, KvError<S::Error>> {
        self.read_u32(0)
    }

    pub fn amount(&self) -> Result<u32, KvError<S::Error>> {
        self.read_u32(4)
    }

    pub fn store(&mut self) -> &mut S {
        &mut self.store
    }

    pub fn hasher(&mut self) -> &mut H {
        &mut self.hasher
    }

    fn find(&self, key: u32) -> Result<Option<u32>, KvError<S::Error>> {
        let amount = self.amount()?;
        let mut addr = SIZE_SZ + AMOUNT_SZ;
        let mut idx = 0;

        while idx < amount {
            let found_key = self.read_u32(addr)?;
            let size = self.read_u32(addr + KEY_SZ)?;

            if key == found_key {
                return Ok(Some(addr));
            } else {
                addr += META_SZ + size;
                idx += 1;
            }
        }

        Ok(None)
    }

    fn size_inc(&mut self, inc: u32) -> Result<u32, KvError<S::Error>> {
        let old_size = self.size()?;
        let new_size = old_size + inc;
        self.write_u32(0, new_size)?;
        Ok(new_size)
    }

    fn amount_inc(&mut self, inc: u32) -> Result<u32, KvError<S::Error>> {
        let old_size = self.amount()?;
        let new_amount = old_size + inc;
        self.write_u32(4, new_amount)?;
        Ok(new_amount)
    }

    fn read_u32(&self, address: u32) -> Result<u32, KvError<S::Error>> {
        let mut v = [0u8; size_of::<u32>()];
        self.read_all(address, &mut v)?;
        Ok(u32::from_ne_bytes(v))
    }

    fn write_u32(&mut self, address: u32, value: u32) -> Result<(), KvError<S::Error>> {
        self.write_all(address, &value.to_ne_bytes())
    }

    fn read_all(&self, address: u32, dst: &mut [u8]) -> Result<(), KvError<S::Error>> {
        let mut read_len = 0;
        while read_len < dst.len() {
            read_len += self
                .store
                .read(address + read_len as u32, &mut dst[read_len..])?;
        }
        Ok(())
    }

    fn write_all(&mut self, address: u32, data: &[u8]) -> Result<(), KvError<S::Error>> {
        let mut written_len = 0;
        while written_len < data.len() {
            written_len += self
                .store
                .write(address + written_len as u32, &data[written_len..])?;
        }
        Ok(())
    }

    fn hash_key(&self, t: &K) -> u32 {
        let mut hasher = self.hasher.clone();
        (*t).hash(&mut hasher);
        hasher.finish() as u32
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn kv() {
        let mut kv = Kv::new();

        // Double insert
        assert!(kv.insert("a", 42i32).is_ok());
        assert!(kv.insert("a", 127i32).is_err());

        // "a" Should Exists
        assert!(kv.exists("a").is_ok());
        assert_eq!(kv.exists("a").unwrap(), true);

        // Get the value
        assert!(kv.get::<i32>("a").is_ok());
        assert_eq!(kv.get::<i32>("a").unwrap(), Some(42));

        // Double forget
        assert!(kv.forget("a").is_ok());
        assert!(kv.forget("a").is_err());

        // "a" Should Not Exists
        assert!(kv.exists("a").is_ok());
        assert_eq!(kv.exists("a").unwrap(), false);

        // Insert new value for key "a"
        assert!(kv.insert("a", 1u8).is_ok());

        // Get the value
        assert!(kv.get::<u8>("a").is_ok());
        assert_eq!(kv.get::<u8>("a").unwrap(), Some(1));

        // Update "a"
        assert!(kv.update("a", 2u8).is_ok());
        assert!(kv.update("a", 3u16).is_err());

        // Get the value
        assert!(kv.get::<u8>("a").is_ok());
        assert_eq!(kv.get::<u8>("a").unwrap(), Some(2));

        // Get the value with wrong size
        assert!(kv.get::<i32>("a").is_err());

        // Reset
        assert!(kv.reset().is_ok());

        // Try to get the value
        assert!(kv.get::<u8>("a").is_ok());
        assert_eq!(kv.get::<u8>("a").unwrap(), None);
    }
}