1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
use boolector::option::{BtorOption, ModelGen};
use boolector::BVSolution;
use either::Either;
use itertools::Itertools;
use llvm_ir::types::{FPType, NamedStructDef, Typed};
use llvm_ir::*;
use log::{debug, info, warn};
use reduce::Reduce;
use std::cell::RefCell;
use std::collections::{HashMap, HashSet};
use std::convert::TryInto;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ops::Deref;

use crate::alloc::Alloc;
use crate::backend::*;
use crate::config::{Config, NullPointerChecking};
use crate::demangling::Demangling;
use crate::error::*;
use crate::function_hooks::{self, FunctionHooks};
use crate::global_allocations::*;
use crate::hooks;
use crate::project::Project;
use crate::solver_utils::{self, PossibleSolutions};
use crate::varmap::{RestoreInfo, VarMap};
use crate::watchpoints::{Watchpoint, Watchpoints};

/// A `State` describes the full program state at a given moment during symbolic
/// execution.
#[derive(Clone)]
pub struct State<'p, B: Backend> {
    /// Reference to the solver instance being used
    pub solver: B::SolverRef,
    /// The configuration being used
    pub config: Config<'p, B>,
    /// Indicates the instruction which is currently being executed
    pub cur_loc: Location<'p>,

    // Private members
    proj: &'p Project,
    varmap: VarMap<B::BV>,
    mem: RefCell<B::Memory>,
    alloc: Alloc,
    global_allocations: GlobalAllocations<'p, B>,
    /// Pointer size in bits.
    /// E.g., this will be `64` if we're analyzing code which was compiled for a
    /// 64-bit platform.
    pointer_size_bits: u32,
    /// Separate from the user-defined hooks in the `config`, these are built-in
    /// hooks for LLVM intrinsics. They can be overridden by hooks in the
    /// `config`; see notes on function resolution in function_hooks.rs.
    pub(crate) intrinsic_hooks: FunctionHooks<'p, B>,
    /// This tracks the call stack of the symbolic execution.
    /// The first entry is the top-level caller, while the last entry is the
    /// caller of the current function.
    ///
    /// We won't have a `StackFrame` for the current function here, only each of
    /// its callers. For instance, while we are executing the top-level function,
    /// this stack will be empty.
    stack: Vec<StackFrame<'p, B::BV>>,
    /// These backtrack points are places where execution can be resumed later
    /// (efficiently, thanks to the incremental solving capabilities of Boolector).
    backtrack_points: RefCell<Vec<BacktrackPoint<'p, B>>>,
    /// Log of the basic blocks which have been executed to get to this point
    path: Vec<PathEntry<'p>>,
    /// Memory watchpoints (segments of memory to log reads/writes of).
    ///
    /// These will persist across backtracking - i.e., backtracking will not
    /// restore watchpoints to what they were at the backtrack point;
    /// backtracking will not touch the set of mem_watchpoints or their
    /// enabled statuses.
    mem_watchpoints: Watchpoints,
    /// Empirically, solving with model-gen enabled can be very slow.
    /// In particular, given a `BV` representing a function pointer, solving for
    /// the concrete function pointer it represents can be slow.
    /// However, if we have a guess for the concrete value, checking whether that
    /// guess is correct may be much faster than blindly solving for the value.
    ///
    /// This cache keeps track of the most recent concrete function pointer value
    /// we resolved at each `Location` where we call a function pointer.
    /// Hopefully, this means we can do the model-gen solve the first time, and
    /// then subsequent times just check that the same solution still holds.
    ///
    /// This cache persists across backtracking - there's no reason to reset it,
    /// as its contents are still treated as "guesses" and checked each time
    /// anyway, and function pointers _probably_ resolve to the same value on
    /// multiple paths.
    function_ptr_cache: HashMap<Location<'p>, u64>,
}

/// Describes a location in LLVM IR in a format more suitable for printing - for
/// instance, uses function names rather than references to `Function` objects.
/// For a richer representation of a code location, see
/// [`Location`](struct.Location.html).
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
pub struct LocationDescription<'p> {
    pub modname: String,
    pub funcname: String,
    pub bbname: Name,
    pub instr: BBInstrIndex,
    pub source_loc: Option<&'p DebugLoc>,
}

/// Denotes either a particular instruction in a basic block, or its terminator.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash, Debug)]
pub enum BBInstrIndex {
    /// Index of the instruction within the basic block. 0-indexed, so 0 means the first instruction of the basic block.
    Instr(usize),
    /// Indicates the basic block terminator (not one of its instructions)
    Terminator,
}

impl fmt::Display for BBInstrIndex {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            BBInstrIndex::Instr(i) => write!(f, "instr {}", i),
            BBInstrIndex::Terminator => write!(f, "terminator"),
        }
    }
}

fn pretty_source_loc(source_loc: &DebugLoc) -> String {
    source_loc.to_string()
}

impl<'p> fmt::Debug for LocationDescription<'p> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_string_with_module()) // default to with-module, especially for a Debug representation
    }
}

impl<'p> LocationDescription<'p> {
    pub(crate) fn to_string_with_module(&self) -> String {
        format!(
            "{{{}: {}, bb {}, {}}}",
            self.modname, self.funcname, self.bbname, self.instr
        )
    }

    pub(crate) fn to_string_no_module(&self) -> String {
        format!("{{{}, bb {}, {}}}", self.funcname, self.bbname, self.instr)
    }
}

/// Describes one segment of a path through the LLVM IR. The "segment" will be
/// one or more consecutive instructions in a single basic block.
///
/// For now, it's just a wrapper around a `Location` describing where the path
/// segment started.
/// E.g., instr 0 within some basic block means we started at the beginning of
/// that basic block.
/// Since the segment stays within a single basic block, the end of the segment
/// must be somewhere within that basic block.
#[derive(PartialEq, Eq, Clone)]
pub struct PathEntry<'p>(pub Location<'p>);

impl<'p> fmt::Debug for PathEntry<'p> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self.to_string_with_module()) // default to with-module, especially for a Debug representation
    }
}

impl<'p> PathEntry<'p> {
    pub(crate) fn to_string_with_module(&self) -> String {
        format!(
            "{{{}: {}, bb {}, starting at {}}}",
            self.0.module.name, self.0.func.name, self.0.bb.name, self.0.instr
        )
    }

    pub(crate) fn to_string_no_module(&self) -> String {
        format!(
            "{{{}, bb {}, starting at {}}}",
            self.0.func.name, self.0.bb.name, self.0.instr
        )
    }

    /// Get all the source locations touched on this path segment.
    /// Consecutive LLVM instructions with the same source location will be
    /// collapsed, so no two consecutive items of the returned iterator will be
    /// equal.
    /// The returned iterator may also be empty, for instance if no debuginfo is
    /// present.
    pub(crate) fn get_all_source_locs(&self) -> impl Iterator<Item = &'p DebugLoc> {
        self.0
            .bb
            .instrs
            .iter()
            .filter_map(|instr| instr.get_debug_loc().as_ref())
            .dedup()
    }
}

/// Fully describes a code location within the LLVM IR.
#[derive(Clone)]
pub struct Location<'p> {
    pub module: &'p Module,
    pub func: &'p Function,
    pub bb: &'p BasicBlock,
    pub instr: BBInstrIndex,
    /// Source location which this IR location corresponds to, if available.
    pub source_loc: Option<&'p DebugLoc>,
}

/// Implementation of `PartialEq` assumes that module names are unique;
/// that function names are unique within a module;
/// and that bb names are unique within a function
impl<'p> PartialEq for Location<'p> {
    fn eq(&self, other: &Self) -> bool {
        self.module.name == other.module.name
            && self.func.name == other.func.name
            && self.bb.name == other.bb.name
            && self.instr == other.instr
    }
}

/// Our implementation of `PartialEq` satisfies the requirements of `Eq`
impl<'p> Eq for Location<'p> {}

impl<'p> Hash for Location<'p> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.module.name.hash(state);
        self.func.name.hash(state);
        self.bb.name.hash(state);
        self.instr.hash(state);
    }
}

impl<'p> fmt::Debug for Location<'p> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{{{}}}", self.to_string_with_module()) // default to with-module, especially for a Debug representation
    }
}

impl<'p> Location<'p> {
    /// Format this `Location` as a string, including the full module name
    pub fn to_string_with_module(&self) -> String {
        format!(
            "{}: {}, bb {}, {}",
            self.module.name, self.func.name, self.bb.name, self.instr
        )
    }

    /// Format this `Location` as a string, omitting the module name
    pub fn to_string_no_module(&self) -> String {
        format!("{}, bb {}, {}", self.func.name, self.bb.name, self.instr)
    }

    /// Format this `Location` as a string, including the short module name. The
    /// short module name is the part of the module name after the last `/`, if
    /// any; or the full module name, if the module name does not contain a `/`.
    pub fn to_string_short_module(&self) -> String {
        let short_module_name = self
            .module
            .name
            .rsplit('/')
            .next()
            .unwrap_or(&self.module.name);
        format!(
            "{}: {}, bb {}, {}",
            short_module_name, self.func.name, self.bb.name, self.instr
        )
    }
}

impl<'p> From<Location<'p>> for LocationDescription<'p> {
    fn from(loc: Location<'p>) -> LocationDescription {
        LocationDescription {
            modname: loc.module.name.clone(),
            funcname: loc.func.name.clone(),
            bbname: loc.bb.name.clone(),
            instr: loc.instr,
            source_loc: loc.source_loc,
        }
    }
}

impl<'p> Location<'p> {
    /// Move to the start of the given basic block, in the same function
    pub(crate) fn move_to_start_of_bb(&mut self, bb: &'p BasicBlock) {
        self.bb = bb;
        self.instr = BBInstrIndex::Instr(0);
    }

    /// Move to the start of the basic block with the given name, in the same function
    pub(crate) fn move_to_start_of_bb_by_name(&mut self, bbname: &Name) {
        self.move_to_start_of_bb(self.func.get_bb_by_name(bbname).unwrap_or_else(|| {
            panic!(
                "Failed to find bb named {} in function {:?}",
                bbname, self.func.name
            )
        }))
    }

    /// Increment the instruction index in the `Location`.
    /// Caller is responsible for ensuring that the `Location` did not point to a
    /// terminator, or this function will panic.
    pub(crate) fn inc(&mut self) {
        match self.instr {
            BBInstrIndex::Instr(i) => {
                if i + 1 >= self.bb.instrs.len() {
                    self.instr = BBInstrIndex::Terminator;
                } else {
                    self.instr = BBInstrIndex::Instr(i + 1);
                }
            },
            BBInstrIndex::Terminator => {
                panic!("called inc() on a Location pointing to a terminator")
            },
        }
    }
}

/// Fully describes the code location of a `Call` or `Invoke` instruction within
/// the LLVM IR, and also includes a reference to the `Call` or `Invoke` instruction
/// itself.
#[derive(PartialEq, Clone, Debug)]
pub struct Callsite<'p> {
    /// Indicates the call or invoke instruction which was responsible for the call
    pub loc: Location<'p>,
    /// Reference to the actual instruction (either a `Call` or `Invoke`) which was
    /// responsible for the call
    pub instr: Either<&'p instruction::Call, &'p terminator::Invoke>,
}

#[derive(PartialEq, Clone, Debug)]
struct StackFrame<'p, V: BV> {
    /// Indicates the call or invoke instruction which was responsible for the call
    callsite: Callsite<'p>,
    /// Caller's local variables, so they can be restored when we return to the caller.
    /// This is necessary in the case of (direct or indirect) recursion.
    /// See notes on `VarMap.get_restore_info_for_fn()`.
    restore_info: RestoreInfo<V>,
}

#[derive(Clone)]
struct BacktrackPoint<'p, B: Backend> {
    /// Where to resume execution
    loc: Location<'p>,
    /// Call stack at the `BacktrackPoint`.
    /// This is a vector of `StackFrame`s where the first entry is the top-level
    /// caller, and the last entry is the caller of the `BacktrackPoint`'s function.
    stack: Vec<StackFrame<'p, B::BV>>,
    /// Constraint to add before restarting execution at `next_bb`.
    /// (Intended use of this is to constrain the branch in that direction.)
    constraint: B::BV,
    /// `VarMap` representing the state of things at the `BacktrackPoint`.
    /// For now, we require making a full copy of the `VarMap` in order to revert
    /// later.
    varmap: VarMap<B::BV>,
    /// `Memory` representing the state of things at the `BacktrackPoint`.
    /// Copies of a `Memory` should be cheap (just a Boolector refcounted
    /// pointer), so it's not a huge concern that we need a full copy here in
    /// order to revert later.
    mem: B::Memory,
    /// The length of `path` at the `BacktrackPoint`.
    /// If we ever revert to this `BacktrackPoint`, we will truncate the `path` to
    /// its first `path_len` entries.
    path_len: usize,
}

impl<'p, B: Backend> fmt::Display for BacktrackPoint<'p, B> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "<BacktrackPoint to execute bb {} with constraint {:?} and {} frames on the callstack>",
            self.loc.bb.name,
            self.constraint,
            self.stack.len()
        )
    }
}

impl<'p, B: Backend> State<'p, B>
where
    B: 'p,
{
    /// `start_loc`: the `Location` where the `State` should begin executing.
    /// As of this writing, `start_loc` should be the entry point of a
    /// function, or you will have problems.
    pub fn new(project: &'p Project, start_loc: Location<'p>, mut config: Config<'p, B>) -> Self {
        let solver = B::SolverRef::new();
        solver.set_opt(BtorOption::SolverTimeout(config.solver_query_timeout));
        if config.demangling.is_none() {
            config.demangling = Some(Demangling::autodetect(project));
        }
        let mut state = Self {
            cur_loc: start_loc.clone(),
            pointer_size_bits: project.pointer_size_bits(),
            proj: project,
            varmap: VarMap::new(solver.clone(), config.loop_bound),
            mem: RefCell::new(Memory::new_uninitialized(
                solver.clone(),
                match config.null_pointer_checking {
                    NullPointerChecking::Simple => true,
                    NullPointerChecking::SplitPath => true,
                    NullPointerChecking::None => false,
                },
                None,
                project.pointer_size_bits(),
            )),
            alloc: Alloc::new(),
            global_allocations: GlobalAllocations::new(),
            intrinsic_hooks: {
                let mut intrinsic_hooks = FunctionHooks::new();
                // we use "function names" that are clearly illegal, as an additional precaution to avoid collisions with actual function names
                intrinsic_hooks.add("intrinsic: llvm.memset", &hooks::intrinsics::symex_memset);
                intrinsic_hooks.add(
                    "intrinsic: llvm.memcpy/memmove",
                    &hooks::intrinsics::symex_memcpy,
                );
                intrinsic_hooks.add("intrinsic: llvm.bswap", &hooks::intrinsics::symex_bswap);
                intrinsic_hooks.add("intrinsic: llvm.ctlz", &hooks::intrinsics::symex_ctlz);
                intrinsic_hooks.add("intrinsic: llvm.cttz", &hooks::intrinsics::symex_cttz);
                intrinsic_hooks.add(
                    "intrinsic: llvm.objectsize",
                    &hooks::intrinsics::symex_objectsize,
                );
                intrinsic_hooks.add("intrinsic: llvm.assume", &hooks::intrinsics::symex_assume);
                intrinsic_hooks.add(
                    "intrinsic: llvm.uadd.with.overflow",
                    &hooks::intrinsics::symex_uadd_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.sadd.with.overflow",
                    &hooks::intrinsics::symex_sadd_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.usub.with.overflow",
                    &hooks::intrinsics::symex_usub_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.ssub.with.overflow",
                    &hooks::intrinsics::symex_ssub_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.umul.with.overflow",
                    &hooks::intrinsics::symex_umul_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.smul.with.overflow",
                    &hooks::intrinsics::symex_smul_with_overflow,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.uadd.sat",
                    &hooks::intrinsics::symex_uadd_sat,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.sadd.sat",
                    &hooks::intrinsics::symex_sadd_sat,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.usub.sat",
                    &hooks::intrinsics::symex_usub_sat,
                );
                intrinsic_hooks.add(
                    "intrinsic: llvm.ssub.sat",
                    &hooks::intrinsics::symex_ssub_sat,
                );
                intrinsic_hooks.add(
                    "intrinsic: generic_stub_hook",
                    &function_hooks::generic_stub_hook,
                );
                intrinsic_hooks.add("intrinsic: abort_hook", &function_hooks::abort_hook);
                intrinsic_hooks
            },
            stack: Vec::new(),
            backtrack_points: RefCell::new(Vec::new()),
            path: Vec::new(),
            mem_watchpoints: config.initial_mem_watchpoints.clone().into_iter().collect(),
            function_ptr_cache: HashMap::new(),

            // listed last (out-of-order) so that they can be used above but moved in now
            solver,
            config,
        };
        // Here we do allocation of the global variables in the Project.
        // We can do _initialization_ lazily (on first reference to the global
        // variable), but we need to do all the _allocation_ up front,
        // because initializers can refer to the addresses of other global
        // variables, potentially even circularly.
        //
        // Note that `project.all_global_vars()` gives us both global variable
        // *definitions* and *declarations*; we can distinguish these because
        // (direct quote from the LLVM docs) "Definitions have initializers,
        // declarations don't." This implies that even globals without an
        // initializer in C have one in LLVM, which seems weird to me, but it's
        // what the docs say, and also matches what I've seen empirically.
        //
        // We'll save each initializer as we allocate the global variable, but
        // only actually process each initializer as the global variable is
        // referenced for the first time.  This saves us from doing all the
        // memory reads/writes right away, which improves performance, especially
        // if the `Project` includes a lot of globals we'll never use (e.g., if
        // we parsed in way more modules than we actually need).
        info!("Allocating global variables and functions");
        debug!("Allocating global variables");
        for (var, module) in project
            .all_global_vars()
            .filter(|(var, _)| var.initializer.is_some())
        {
            // Allocate the global variable.
            //
            // In the allocation pass, we want to process each global variable
            // exactly once, and the order doesn't matter, so we simply process
            // definitions, since each global variable must have exactly one
            // definition. Hence the `filter()` above.
            if let Type::PointerType { pointee_type, .. } = var.ty.as_ref() {
                let size_bits = state.size_in_bits(&pointee_type).expect(
                    "Global variable has a struct type which is opaque in the entire Project",
                );
                let size_bits = if size_bits == 0 {
                    debug!(
                        "Global {:?} has size 0 bits; allocating 8 bits for it anyway",
                        var.name
                    );
                    8
                } else {
                    size_bits
                };
                let addr = state.allocate(size_bits as u64);
                debug!("Allocated {:?} at {:?}", var.name, addr);
                state
                    .global_allocations
                    .allocate_global_var(var, module, addr);
            } else {
                panic!("Global variable has non-pointer type {:?}", &var.ty);
            }
        }
        // We also have to allocate (at least a tiny bit of) memory for each
        // `Function`, just so that we can have pointers to those `Function`s.
        // We can use `global_allocations.get_func_for_address()` to interpret
        // these function pointers.
        // Similarly, we allocate tiny bits of memory for each function hook,
        // so that we can have pointers to those hooks.
        debug!("Allocating functions");
        for (func, module) in project.all_functions() {
            let addr: u64 = state.alloc.alloc(64_u64); // we just allocate 64 bits for each function. No reason to allocate more.
            let addr_bv = state.bv_from_u64(addr, project.pointer_size_bits());
            debug!("Allocated {:?} at {:?}", func.name, addr_bv);
            state
                .global_allocations
                .allocate_function(func, module, addr, addr_bv);
        }
        debug!("Allocating function hooks");
        for (funcname, hook) in state.config.function_hooks.get_all_hooks() {
            let addr: u64 = state.alloc.alloc(64_u64); // we just allocate 64 bits for each function. No reason to allocate more.
            let addr_bv = state.bv_from_u64(addr, project.pointer_size_bits());
            debug!("Allocated hook for {:?} at {:?}", funcname, addr_bv);
            state
                .global_allocations
                .allocate_function_hook((*hook).clone(), addr, addr_bv);
        }
        debug!("Done allocating global variables and functions");
        state
    }

    /// Fully duplicate the `State`. Unlike with `clone()`, the `State` this
    /// function returns will have a fully separate (fully duplicated) solver
    /// instance. (With `clone()`, the states will still share references to the
    /// same solver instance.)
    pub fn fork(&self) -> Self {
        let mut cloned = self.clone();
        let new_solver = cloned.solver.duplicate();
        cloned.varmap.change_solver(new_solver.clone());
        cloned.mem.borrow_mut().change_solver(new_solver.clone());
        cloned.global_allocations.change_solver(new_solver.clone());
        cloned.solver = new_solver;
        cloned
    }

    /// Returns `true` if current constraints are satisfiable, `false` if not.
    ///
    /// Returns `Error::SolverError` if the query failed (e.g., was interrupted or timed out).
    pub fn sat(&self) -> Result<bool> {
        solver_utils::sat(&self.solver)
    }

    /// Returns `true` if the current constraints plus the given additional constraints
    /// are together satisfiable, or `false` if not.
    ///
    /// Returns `Error::SolverError` if the query failed (e.g., was interrupted or timed out).
    ///
    /// Does not permanently add the given constraints to the solver.
    pub fn sat_with_extra_constraints<'b>(
        &'b self,
        constraints: impl IntoIterator<Item = &'b B::BV>,
    ) -> Result<bool> {
        solver_utils::sat_with_extra_constraints(&self.solver, constraints)
    }

    /// Returns `true` if under the current constraints, `a` and `b` must have the
    /// same value. Returns `false` if `a` and `b` may have different values. (If the
    /// current constraints are themselves unsatisfiable, that will result in
    /// `true`.)
    ///
    /// A common use case for this function is to test whether some `BV` must be
    /// equal to a given concrete value. You can do this with something like
    /// `state.bvs_must_be_equal(bv, &state.bv_from_u64(...))`.
    ///
    /// This function and `bvs_can_be_equal()` are both more efficient than
    /// `get_a_solution()` or `get_possible_solutions()`-type functions, as they do
    /// not require full model generation. You should prefer this function or
    /// `bvs_can_be_equal()` if they are sufficient for your needs.
    pub fn bvs_must_be_equal(&self, a: &B::BV, b: &B::BV) -> Result<bool> {
        solver_utils::bvs_must_be_equal(&self.solver, a, b)
    }

    /// Returns `true` if under the current constraints, `a` and `b` can have the
    /// same value. Returns `false` if `a` and `b` cannot have the same value. (If
    /// the current constraints are themselves unsatisfiable, that will also result
    /// in `false`.)
    ///
    /// A common use case for this function is to test whether some `BV` can be
    /// equal to a given concrete value. You can do this with something like
    /// `state.bvs_can_be_equal(bv, &state.bv_from_u64(...))`.
    ///
    /// This function and `bvs_must_be_equal()` are both more efficient than
    /// `get_a_solution()` or `get_possible_solutions()`-type functions, as they do
    /// not require full model generation. You should prefer this function or
    /// `bvs_must_be_equal()` if they are sufficient for your needs.
    pub fn bvs_can_be_equal(&self, a: &B::BV, b: &B::BV) -> Result<bool> {
        solver_utils::bvs_can_be_equal(&self.solver, a, b)
    }

    /// Get one possible concrete value for the `BV`.
    /// Returns `Ok(None)` if no possible solution, or `Error::SolverError` if the solver query failed.
    pub fn get_a_solution_for_bv(&self, bv: &B::BV) -> Result<Option<BVSolution>> {
        // first check if the `bv` is a constant, if so, we can avoid a solve
        match bv.as_binary_str() {
            Some(bstr) => Ok(Some(BVSolution::from_01x_str(bstr))),
            None => {
                warn!("A call to get_a_solution_for_bv() is resulting in a call to sat() with model generation enabled. Experimentally, these types of calls can be very slow. The BV is {:?}", bv);
                self.solver.set_opt(BtorOption::ModelGen(ModelGen::All));
                let solution = if self.sat()? {
                    bv.get_a_solution().map(Some)
                } else {
                    Ok(None)
                };
                self.solver
                    .set_opt(BtorOption::ModelGen(ModelGen::Disabled));
                solution
            },
        }
    }

    /// Get one possible concrete value for the given IR `Name` (from the given `Function` name).
    /// Returns `Ok(None)` if no possible solution, or `Error::SolverError` if the solver query failed.
    #[allow(clippy::ptr_arg)] // as of this writing, clippy warns that the &String argument should be &str; but it actually needs to be &String here
    pub fn get_a_solution_for_irname(
        &mut self,
        funcname: &String,
        name: &Name,
    ) -> Result<Option<BVSolution>> {
        let bv = self.varmap.lookup_var(funcname, name);
        self.get_a_solution_for_bv(bv)
    }

    /// Get a description of the possible solutions for the `BV`.
    ///
    /// `n`: Maximum number of distinct solutions to check for.
    /// If there are more than `n` possible solutions, this returns a
    /// `PossibleSolutions::AtLeast` containing `n+1` solutions.
    ///
    /// These solutions will be disambiguated - see docs on `boolector::BVSolution`.
    ///
    /// If there are no possible solutions, this returns `Ok` with an empty
    /// `PossibleSolutions`, rather than returning an `Err` with `Error::Unsat`.
    pub fn get_possible_solutions_for_bv(
        &self,
        bv: &B::BV,
        n: usize,
    ) -> Result<PossibleSolutions<BVSolution>> {
        solver_utils::get_possible_solutions_for_bv(self.solver.clone(), bv, n)
    }

    /// Get a description of the possible solutions for the given IR `Name` (from the given `Function` name).
    ///
    /// `n`: Maximum number of distinct solutions to check for.
    /// If there are more than `n` possible solutions, this returns a
    /// `PossibleSolutions::AtLeast` containing `n+1` solutions.
    ///
    /// These solutions will be disambiguated - see docs on `boolector::BVSolution`.
    ///
    /// If there are no possible solutions, this returns `Ok` with an empty
    /// `PossibleSolutions`, rather than returning an `Err` with `Error::Unsat`.
    #[allow(clippy::ptr_arg)] // as of this writing, clippy warns that the &String argument should be &str; but it actually needs to be &String here
    pub fn get_possible_solutions_for_irname(
        &mut self,
        funcname: &String,
        name: &Name,
        n: usize,
    ) -> Result<PossibleSolutions<BVSolution>> {
        let bv = self.varmap.lookup_var(funcname, name);
        self.get_possible_solutions_for_bv(bv, n)
    }

    /// Get the maximum possible solution for the `BV`: that is, the highest value
    /// for which the current set of constraints is still satisfiable.
    /// "Maximum" will be interpreted in an unsigned fashion.
    ///
    /// Returns `Ok(None)` if there is no solution for the `BV`, that is, if the
    /// current set of constraints is unsatisfiable. Only returns `Err` if a solver
    /// query itself fails. Panics if the `BV` is wider than 64 bits.
    pub fn max_possible_solution_for_bv_as_u64(&self, bv: &B::BV) -> Result<Option<u64>> {
        solver_utils::max_possible_solution_for_bv_as_u64(self.solver.clone(), bv)
    }

    /// Get the maximum possible solution for the given IR `Name` (from the given
    /// `Function` name): that is, the highest value for which the current set of
    /// constraints is still satisfiable.
    /// "Maximum" will be interpreted in an unsigned fashion.
    ///
    /// Returns `Ok(None)` if there is no solution for the `BV`, that is, if the
    /// current set of constraints is unsatisfiable. Only returns `Err` if a solver
    /// query itself fails. Panics if the `BV` is wider than 64 bits.
    #[allow(clippy::ptr_arg)] // as of this writing, clippy warns that the &String argument should be &str; but it actually needs to be &String here
    pub fn max_possible_solution_for_irname_as_u64(
        &mut self,
        funcname: &String,
        name: &Name,
    ) -> Result<Option<u64>> {
        let bv = self.varmap.lookup_var(funcname, name);
        solver_utils::max_possible_solution_for_bv_as_u64(self.solver.clone(), bv)
    }

    /// Get the minimum possible solution for the `BV`: that is, the lowest value
    /// for which the current set of constraints is still satisfiable.
    /// "Minimum" will be interpreted in an unsigned fashion.
    ///
    /// Returns `Ok(None)` if there is no solution for the `BV`, that is, if the
    /// current set of constraints is unsatisfiable. Only returns `Err` if a solver
    /// query itself fails. Panics if the `BV` is wider than 64 bits.
    pub fn min_possible_solution_for_bv_as_u64(&self, bv: &B::BV) -> Result<Option<u64>> {
        solver_utils::min_possible_solution_for_bv_as_u64(self.solver.clone(), bv)
    }

    /// Get the minimum possible solution for the given IR `Name` (from the given
    /// `Function` name): that is, the lowest value for which the current set of
    /// constraints is still satisfiable.
    /// "Minimum" will be interpreted in an unsigned fashion.
    ///
    /// Returns `Ok(None)` if there is no solution for the `BV`, that is, if the
    /// current set of constraints is unsatisfiable. Only returns `Err` if a solver
    /// query itself fails. Panics if the `BV` is wider than 64 bits.
    #[allow(clippy::ptr_arg)] // as of this writing, clippy warns that the &String argument should be &str; but it actually needs to be &String here
    pub fn min_possible_solution_for_irname_as_u64(
        &self,
        funcname: &String,
        name: &Name,
    ) -> Result<Option<u64>> {
        let bv = self.varmap.lookup_var(funcname, name);
        solver_utils::min_possible_solution_for_bv_as_u64(self.solver.clone(), bv)
    }

    /// Create a `BV` constant representing the given `bool` (either constant
    /// `true` or constant `false`).
    /// The resulting `BV` will be either constant `0` or constant `1`, and will
    /// have bitwidth `1`.
    pub fn bv_from_bool(&self, b: bool) -> B::BV {
        B::BV::from_bool(self.solver.clone(), b)
    }

    /// Create a `BV` representing the given constant `i32` value, with the given
    /// bitwidth.
    pub fn bv_from_i32(&self, i: i32, width: u32) -> B::BV {
        B::BV::from_i32(self.solver.clone(), i, width)
    }

    /// Create a `BV` representing the given constant `u32` value, with the given
    /// bitwidth.
    pub fn bv_from_u32(&self, u: u32, width: u32) -> B::BV {
        B::BV::from_u32(self.solver.clone(), u, width)
    }

    /// Create a `BV` representing the given constant `i64` value, with the given
    /// bitwidth.
    pub fn bv_from_i64(&self, i: i64, width: u32) -> B::BV {
        B::BV::from_i64(self.solver.clone(), i, width)
    }

    /// Create a `BV` representing the given constant `u64` value, with the given
    /// bitwidth.
    pub fn bv_from_u64(&self, u: u64, width: u32) -> B::BV {
        B::BV::from_u64(self.solver.clone(), u, width)
    }

    /// Create a `BV` representing the constant `0` of the given bitwidth.
    /// This is equivalent to `self.bv_from_i32(0, width)` but may be more
    /// efficient.
    pub fn zero(&self, width: u32) -> B::BV {
        B::BV::zero(self.solver.clone(), width)
    }

    /// Create a `BV` representing the constant `1` of the given bitwidth.
    /// This is equivalent to `self.bv_from_i32(1, width)` but may be more
    /// efficient.
    pub fn one(&self, width: u32) -> B::BV {
        B::BV::one(self.solver.clone(), width)
    }

    /// Create a `BV` constant of the given width, where all bits are set to one.
    /// This is equivalent to `self.bv_from_i32(-1, width)` but may be more
    /// efficient.
    pub fn ones(&self, width: u32) -> B::BV {
        B::BV::ones(self.solver.clone(), width)
    }

    /// Create a new (unconstrained) `BV` for the given `Name` (in the current function).
    ///
    /// This function performs uniquing, so if you call it twice
    /// with the same `Name`-`Function` pair, you will get two different `BV`s.
    ///
    /// Returns the new `BV`, or `Err` if it can't be created.
    ///
    /// (As of this writing, the only `Err` that might be returned is
    /// `Error::LoopBoundExceeded`, which is returned if creating the new `BV`
    /// would exceed `max_versions_of_name` -- see
    /// [`Config`](struct.Config.html).)
    ///
    /// Also, we assume that no two `Function`s share the same name.
    pub fn new_bv_with_name(&mut self, name: Name, bits: u32) -> Result<B::BV> {
        self.varmap
            .new_bv_with_name(self.cur_loc.func.name.clone(), name, bits)
    }

    /// Assign the given `BV` to the given `Name` (in the current function).
    ///
    /// This function performs uniquing, so it creates a new version of the
    /// variable represented by the `(String, Name)` pair rather than overwriting
    /// the current version.
    ///
    /// Returns `Err` if the assignment can't be performed.
    ///
    /// (As of this writing, the only `Err` that might be returned is
    /// `Error::LoopBoundExceeded`, which is returned if creating the new version
    /// of the `BV` would exceed `max_versions_of_name` -- see
    /// [`Config`](struct.Config.html).)
    pub fn assign_bv_to_name(&mut self, name: Name, bv: B::BV) -> Result<()> {
        self.varmap
            .assign_bv_to_name(self.cur_loc.func.name.clone(), name, bv)
    }

    /// Record the result of `thing` to be `resultval`.
    /// Assumes `thing` is in the current function.
    /// Will fail with `Error::LoopBoundExceeded` if that would exceed
    /// `max_versions_of_name` (see [`Config`](struct.Config.html)).
    #[cfg(debug_assertions)]
    pub fn record_bv_result(
        &mut self,
        thing: &impl instruction::HasResult,
        resultval: B::BV,
    ) -> Result<()> {
        let thing_size_in_bits = self.size_in_bits(&self.type_of(thing)).ok_or_else(|| {
            Error::MalformedInstruction("Instruction result type is an opaque struct type".into())
        })?;
        if thing_size_in_bits != resultval.get_width() {
            Err(Error::OtherError(format!(
                "Computed result for an instruction has the wrong size: instruction {:?} with result size {}, but got result {:?} with size {}",
                thing,
                thing_size_in_bits,
                resultval,
                resultval.get_width()
            )))
        } else {
            self.assign_bv_to_name(thing.get_result().clone(), resultval)
        }
    }
    #[cfg(not(debug_assertions))]
    pub fn record_bv_result(
        &mut self,
        thing: &impl instruction::HasResult,
        resultval: B::BV,
    ) -> Result<()> {
        self.assign_bv_to_name(thing.get_result().clone(), resultval)
    }

    /// Overwrite the latest version of the given `Name` to instead be `bv`.
    /// Assumes `Name` is in the current function.
    pub fn overwrite_latest_version_of_bv(&mut self, name: &Name, bv: B::BV) {
        self.varmap
            .overwrite_latest_version_of_bv(&self.cur_loc.func.name, name, bv)
    }

    /// Convenience function to get the `Type` of anything that is `Typed`.
    pub fn type_of<T: Typed + ?Sized>(&self, t: &T) -> TypeRef {
        self.cur_loc.module.type_of(t)
    }

    /// Convert an `Operand` to the appropriate `BV`.
    /// Assumes the `Operand` is in the current function.
    /// (All `Operand`s should be either a constant or a variable we previously added to the state.)
    pub fn operand_to_bv(&self, op: &Operand) -> Result<B::BV> {
        match op {
            Operand::ConstantOperand(c) => self.const_to_bv(c),
            Operand::LocalOperand { name, .. } => Ok(self
                .varmap
                .lookup_var(&self.cur_loc.func.name, name)
                .clone()),
            Operand::MetadataOperand => panic!("Can't convert {:?} to BV", op),
        }
    }

    /// Convert a `Constant` to the appropriate `BV`.
    pub fn const_to_bv(&self, c: &Constant) -> Result<B::BV> {
        match c {
            Constant::Int { bits, value } => Ok(self.bv_from_u64(*value, *bits)),
            Constant::Null(ty) | Constant::AggregateZero(ty) | Constant::Undef(ty) => {
                let size_bits = self.size_in_bits(ty).ok_or_else(|| {
                    Error::OtherError(format!(
                        "const_to_bv on a constant with opaque struct type: {:?}",
                        c
                    ))
                })?;
                Ok(self.zero(size_bits))
            },
            Constant::Struct {
                values: elements, ..
            }
            | Constant::Array { elements, .. }
            | Constant::Vector(elements) => elements
                .iter()
                .map(|c| self.const_to_bv(c)) // produces an iterator over Result<B::BV>
                .reduce(|a, b| Ok(b?.concat(&a?))) // the lambda has type Fn(Result<B::BV>, Result<B::BV>) -> Result<B::BV>
                .unwrap(), // unwrap the Option<> produced by reduce(), leaving the final return type Result<B::BV>
            Constant::GlobalReference { name, .. } => {
                if let Some(ga) = self
                    .global_allocations
                    .get_global_allocation(name, self.cur_loc.module)
                {
                    match ga {
                        GlobalAllocation::Function { addr, .. } => Ok(addr.clone()),
                        GlobalAllocation::GlobalVariable {
                            addr,
                            initializer,
                            initialized,
                        } => {
                            // First, initialize the global if it hasn't been already.
                            // As mentioned in comments in `State::new()`, we lazily
                            // initialize globals upon first reference to them.
                            //
                            // We assume that global-variable initializers can only refer to the
                            // *addresses* of other globals, and not the *values* of other
                            // global constants, so that it's fine that any referred-to globals
                            // may have been allocated but not initialized at this point.
                            // This assumption seems to hold empirically: in my tests,
                            // (1) clang performs constant-folding, even at -O0, on global
                            //     variable initializers so that these initializers do not refer to
                            //     the values of other global constants at the LLVM level. For
                            //     instance, the C code
                            //       `const int a = 1; const int b = a + 3;`
                            //     is translated into the LLVM equivalent of
                            //       `const int a = 1; const int b = 4;`
                            // (2) clang rejects programs where global variable initializers refer
                            //     to the value of externally-defined global constants, in which
                            //     case the constant-folding described above would be impossible.
                            //     Note, however, that clang does allow referring to the *addresses*
                            //     of externally-defined global variables.
                            // Therefore, we can go ahead and set our `.initialized` flag early,
                            // because even if `const_to_bv` on our initializer references other
                            // globals (possibly causing their lazy initialization as well),
                            // those globals can't refer to our contents, so won't know that we
                            // are lying about being initialized.
                            // Setting the flag early prevents an infinite loop where I try to
                            // initialize, but my initializer refers to your address so you try
                            // to initialize, but your initializer refers to my address so I try
                            // to initialize, etc.
                            if !initialized.get() {
                                debug!(
                                    "Initializing {:?} with initializer {:?}",
                                    name, &initializer
                                );
                                initialized.set(true);
                                // Global variables could be zero-element arrays, or structs
                                // containing zero-element arrays, so we use
                                // `const_to_bv_maybe_zerowidth()`
                                if let Some(bv) = self.const_to_bv_maybe_zerowidth(initializer)? {
                                    // If that returned `None`, the global is a zero-element array,
                                    // in which case we don't want to initialize it (and can't, or
                                    // we'd get a panic about a 0-width BV)
                                    self.write_without_mut(addr, bv)?;
                                }
                            }
                            Ok(addr.clone())
                        },
                    }
                } else if let Some(alias) = self
                    .cur_loc
                    .module
                    .global_aliases
                    .iter()
                    .find(|a| &a.name == name)
                {
                    self.const_to_bv(&alias.aliasee)
                } else {
                    Err(Error::OtherError(format!("const_to_bv: GlobalReference to {:?} which was not found (current module is {:?})", name, &self.cur_loc.module.name)))
                }
            },
            Constant::Add(a) => Ok(self
                .const_to_bv(&a.operand0)?
                .add(&self.const_to_bv(&a.operand1)?)),
            Constant::Sub(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .sub(&self.const_to_bv(&s.operand1)?)),
            Constant::Mul(m) => Ok(self
                .const_to_bv(&m.operand0)?
                .mul(&self.const_to_bv(&m.operand1)?)),
            Constant::UDiv(u) => Ok(self
                .const_to_bv(&u.operand0)?
                .udiv(&self.const_to_bv(&u.operand1)?)),
            Constant::SDiv(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .sdiv(&self.const_to_bv(&s.operand1)?)),
            Constant::URem(u) => Ok(self
                .const_to_bv(&u.operand0)?
                .urem(&self.const_to_bv(&u.operand1)?)),
            Constant::SRem(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .srem(&self.const_to_bv(&s.operand1)?)),
            Constant::And(a) => Ok(self
                .const_to_bv(&a.operand0)?
                .and(&self.const_to_bv(&a.operand1)?)),
            Constant::Or(o) => Ok(self
                .const_to_bv(&o.operand0)?
                .or(&self.const_to_bv(&o.operand1)?)),
            Constant::Xor(x) => Ok(self
                .const_to_bv(&x.operand0)?
                .xor(&self.const_to_bv(&x.operand1)?)),
            Constant::Shl(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .sll(&self.const_to_bv(&s.operand1)?)),
            Constant::LShr(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .srl(&self.const_to_bv(&s.operand1)?)),
            Constant::AShr(s) => Ok(self
                .const_to_bv(&s.operand0)?
                .sra(&self.const_to_bv(&s.operand1)?)),
            Constant::ExtractElement(ee) => match &ee.index.as_ref() {
                Constant::Int { value: index, .. } => match &ee.vector.as_ref() {
                    Constant::Vector(els) => {
                        let el = els.get(*index as usize).ok_or_else(|| {
                            Error::MalformedInstruction(
                                "Constant::ExtractElement index out of range".to_owned(),
                            )
                        })?;
                        self.const_to_bv(el)
                    },
                    c => Err(Error::MalformedInstruction(format!(
                        "Expected ExtractElement.vector to be a Constant::Vector, got {:?}",
                        c
                    ))),
                },
                index => Err(Error::MalformedInstruction(format!(
                    "Expected ExtractElement.index to be a Constant::Int, but got {:?}",
                    index
                ))),
            },
            Constant::InsertElement(ie) => match &ie.index.as_ref() {
                Constant::Int { value: index, .. } => match &ie.vector.as_ref() {
                    Constant::Vector(els) => {
                        let mut els = els.clone();
                        let el: &mut ConstantRef =
                            els.get_mut(*index as usize).ok_or_else(|| {
                                Error::MalformedInstruction(
                                    "Constant::InsertElement index out of range".to_owned(),
                                )
                            })?;
                        *el = ie.element.clone();
                        self.const_to_bv(&Constant::Vector(els))
                    },
                    c => Err(Error::MalformedInstruction(format!(
                        "Expected InsertElement.vector to be a Constant::Vector, got {:?}",
                        c
                    ))),
                },
                index => Err(Error::MalformedInstruction(format!(
                    "Expected InsertElement.index to be a Constant::Int, but got {:?}",
                    index
                ))),
            },
            Constant::ExtractValue(ev) => self.const_to_bv(Self::simplify_const_ev(
                &ev.aggregate,
                ev.indices.iter().copied(),
            )?),
            Constant::InsertValue(iv) => {
                let c = Self::simplify_const_iv(
                    &iv.aggregate,
                    (*iv.element).clone(),
                    iv.indices.iter().copied(),
                )?;
                self.const_to_bv(&c)
            },
            Constant::GetElementPtr(gep) => {
                // heavily inspired by `ExecutionManager::symex_gep()` in symex.rs. TODO could try to share more code
                let bvbase = self.const_to_bv(&gep.address)?;
                let offset = self.get_offset_recursive(
                    gep.indices.iter(),
                    &self.type_of(&gep.address),
                    bvbase.get_width(),
                )?;
                Ok(bvbase.add(&offset))
            },
            Constant::Trunc(t) => {
                let to_size_bits = self.size_in_bits(&t.to_type).ok_or_else(|| {
                    Error::OtherError(format!(
                        "const_to_bv on a constant with opaque struct type {:?}",
                        c
                    ))
                })?;
                self.const_to_bv(&t.operand)
                    .map(|bv| bv.slice(to_size_bits - 1, 0))
            },
            Constant::ZExt(z) => {
                let to_size_bits = self.size_in_bits(&z.to_type).ok_or_else(|| {
                    Error::OtherError(format!(
                        "const_to_bv on a constant with opaque struct type {:?}",
                        c
                    ))
                })?;
                self.const_to_bv(&z.operand)
                    .map(|bv| bv.zero_extend_to_bits(to_size_bits))
            },
            Constant::SExt(s) => {
                let to_size_bits = self.size_in_bits(&s.to_type).ok_or_else(|| {
                    Error::OtherError(format!(
                        "const_to_bv on a constant with opaque struct type {:?}",
                        c
                    ))
                })?;
                self.const_to_bv(&s.operand)
                    .map(|bv| bv.sign_extend_to_bits(to_size_bits))
            },
            Constant::PtrToInt(pti) => {
                let bv = self.const_to_bv(&pti.operand)?;
                assert_eq!(
                    bv.get_width(),
                    self.size_in_bits(&pti.to_type)
                        .ok_or_else(|| Error::MalformedInstruction(
                            "PtrToInt result type is opaque struct type".into()
                        ))?
                );
                Ok(bv) // just a cast, it's the same bits underneath
            },
            Constant::IntToPtr(itp) => {
                let bv = self.const_to_bv(&itp.operand)?;
                assert_eq!(
                    bv.get_width(),
                    self.size_in_bits(&itp.to_type)
                        .ok_or_else(|| Error::MalformedInstruction(
                            "IntToPtr result type is opaque struct type".into()
                        ))?
                );
                Ok(bv) // just a cast, it's the same bits underneath
            },
            Constant::BitCast(bc) => {
                let bv = self.const_to_bv(&bc.operand)?;
                assert_eq!(
                    bv.get_width(),
                    self.size_in_bits(&bc.to_type)
                        .ok_or_else(|| Error::MalformedInstruction(
                            "BitCast result type is opaque struct type".into()
                        ))?
                );
                Ok(bv) // just a cast, it's the same bits underneath
            },
            Constant::AddrSpaceCast(ac) => {
                let bv = self.const_to_bv(&ac.operand)?;
                assert_eq!(
                    bv.get_width(),
                    self.size_in_bits(&ac.to_type)
                        .ok_or_else(|| Error::MalformedInstruction(
                            "AddrSpaceCast result type is opaque struct type".into()
                        ))?
                );
                Ok(bv) // just a cast, it's the same bits underneath
            },
            Constant::ICmp(icmp) => {
                let bv0 = self.const_to_bv(&icmp.operand0)?;
                let bv1 = self.const_to_bv(&icmp.operand1)?;
                Ok(match icmp.predicate {
                    IntPredicate::EQ => bv0._eq(&bv1),
                    IntPredicate::NE => bv0._ne(&bv1),
                    IntPredicate::UGT => bv0.ugt(&bv1),
                    IntPredicate::UGE => bv0.ugte(&bv1),
                    IntPredicate::ULT => bv0.ult(&bv1),
                    IntPredicate::ULE => bv0.ulte(&bv1),
                    IntPredicate::SGT => bv0.sgt(&bv1),
                    IntPredicate::SGE => bv0.sgte(&bv1),
                    IntPredicate::SLT => bv0.slt(&bv1),
                    IntPredicate::SLE => bv0.slte(&bv1),
                })
            },
            Constant::Select(s) => {
                let b = self.const_to_bv(&s.condition)?;
                match b.as_bool() {
                    None => Err(Error::MalformedInstruction(
                        "Constant::Select: Expected a constant condition".to_owned(),
                    )),
                    Some(true) => self.const_to_bv(&s.true_value),
                    Some(false) => self.const_to_bv(&s.false_value),
                }
            },
            _ => unimplemented!("const_to_bv for {:?}", c),
        }
    }

    /// Convert a `Constant` to the appropriate `BV`, allowing for the `Constant`
    /// to possibly be zero-width (LLVM 0-element array is the only way for that
    /// to happen) or be a struct with zero-width elements (i.e., struct with one
    /// or more elements being a 0-element array).
    ///
    /// Returns `Ok(None)` if the result would be a zero-width `BV`.
    fn const_to_bv_maybe_zerowidth(&self, c: &Constant) -> Result<Option<B::BV>> {
        match c {
            Constant::Null(ty) | Constant::AggregateZero(ty) | Constant::Undef(ty) => {
                match self.size_in_bits(ty) {
                    None => Err(Error::OtherError(format!(
                        "const_to_bv on a constant with opaque struct type: {:?}",
                        c
                    ))),
                    Some(0) => Ok(None),
                    Some(bits) => Ok(Some(self.zero(bits))),
                }
            },
            Constant::Struct { values, .. } => {
                values
                    .iter()
                    .map(|val| {
                        self.size_in_bits(&self.type_of(val.as_ref()))
                            .map(|bits| (val, bits))
                            .ok_or_else(|| {
                                Error::OtherError(format!(
                                    "const_to_bv: encountered an opaque struct type: {:?}",
                                    val
                                ))
                            })
                    })
                    .collect::<Result<Vec<_>>>()?
                    .into_iter()
                    .filter(|&(_val, bits)| bits > 0)
                    .map(|(val, _bits)| val)
                    .map(|val| self.const_to_bv_maybe_zerowidth(val).transpose().unwrap()) // since we `filter()`'d first, we should have all `Some`s here. We transpose-unwrap Result<Option<BV>> to Result<BV>
                    .reduce(|a, b| Ok(b?.concat(&a?))) // the lambda has type Fn(Result<B::BV>, Result<B::BV>) -> Result<B::BV>
                    .transpose()
            },
            Constant::Array { elements, .. } if elements.is_empty() => Ok(None),
            // note that Constant::Vector cannot have 0 elements, per LLVM LangRef
            _ => self.const_to_bv(c).map(|bv| Some(bv)),
        }
    }

    /// Given a `Constant::Struct` and a series of `ExtractValue` indices, get the
    /// final `Constant` referred to
    fn simplify_const_ev(
        s: &Constant,
        mut indices: impl Iterator<Item = u32>,
    ) -> Result<&Constant> {
        match indices.next() {
            None => Ok(s),
            Some(index) => {
                if let Constant::Struct { values, .. } = s {
                    let val = values.get(index as usize).ok_or_else(|| {
                        Error::MalformedInstruction(
                            "Constant::ExtractValue index out of range".to_owned(),
                        )
                    })?;
                    Self::simplify_const_ev(val, indices)
                } else {
                    panic!("simplify_const_ev: not a Constant::Struct: {:?}", s)
                }
            },
        }
    }

    /// Given a `Constant::Struct`, a value to insert, and a series of
    /// `InsertValue` indices, get the final `Constant` referred to
    fn simplify_const_iv(
        s: &Constant,
        val: Constant,
        mut indices: impl Iterator<Item = u32>,
    ) -> Result<ConstantRef> {
        match indices.next() {
            None => Ok(ConstantRef::new(val)),
            Some(index) => {
                if let Constant::Struct {
                    name,
                    values,
                    is_packed,
                } = s
                {
                    let to_replace = values
                        .get(index as usize)
                        .ok_or_else(|| {
                            Error::MalformedInstruction(
                                "Constant::InsertValue index out of range".to_owned(),
                            )
                        })?
                        .clone();
                    let mut values = values.clone();
                    values[index as usize] = Self::simplify_const_iv(&to_replace, val, indices)?;
                    Ok(ConstantRef::new(Constant::Struct {
                        name: name.clone(),
                        values,
                        is_packed: *is_packed,
                    }))
                } else {
                    panic!("simplify_const_iv: not a Constant::Struct: {:?}", s)
                }
            },
        }
    }

    /// Get the offset of the element (in bytes, as a `BV` of `result_bits` bits).
    ///
    /// If `base_type` is a `NamedStructType`, the struct should be defined in the current module.
    fn get_offset_recursive<'a>(
        &self,
        mut indices: impl Iterator<Item = &'a ConstantRef>,
        base_type: &Type,
        result_bits: u32,
    ) -> Result<B::BV> {
        if let Type::NamedStructType { name } = base_type {
            match self.cur_loc.module.types.named_struct_def(name) {
                None => {
                    return Err(Error::MalformedInstruction(format!("get_offset on a struct type not defined in the current module (struct name {:?})", name)));
                },
                Some(NamedStructDef::Opaque) => {
                    return Err(Error::MalformedInstruction(format!(
                        "get_offset on an opaque struct type ({:?})",
                        name
                    )));
                },
                Some(NamedStructDef::Defined(ty)) => {
                    return self.get_offset_recursive(indices, &ty, result_bits);
                },
            }
        }
        match indices.next() {
            None => Ok(self.zero(result_bits)),
            Some(index) => match base_type {
                Type::PointerType { .. } | Type::ArrayType { .. } | Type::VectorType { .. } => {
                    let index = self.const_to_bv(index)?.zero_extend_to_bits(result_bits);
                    let (offset, nested_ty) =
                        self.get_offset_bv_index(base_type, &index, self.solver.clone())?;
                    self.get_offset_recursive(indices, nested_ty, result_bits)
                        .map(|bv| bv.add(&offset))
                },
                Type::StructType { .. } => match index.as_ref() {
                    Constant::Int { value: index, .. } => {
                        let (offset, nested_ty) =
                            self.get_offset_constant_index(base_type, *index as usize)?;
                        self.get_offset_recursive(indices, &nested_ty, result_bits)
                            .map(|bv| bv.add(&self.bv_from_u64(offset as u64, result_bits)))
                    },
                    _ => Err(Error::MalformedInstruction(format!(
                        "Expected index into struct type to be a constant int, but got index {:?}",
                        index
                    ))),
                },
                Type::NamedStructType { .. } => {
                    panic!("NamedStructType case should have been handled above")
                },
                _ => panic!("get_offset_recursive with base type {:?}", base_type),
            },
        }
    }

    /// Given a `BV`, interpret it as a function pointer, and return a
    /// description of the possible `Function`s which it would point to.
    ///
    /// `n`: Maximum number of distinct `Callable`s to check for.
    /// If there are more than `n` possible `Callable`s, this returns a
    /// `PossibleSolutions::AtLeast` with `n+1` `Callable`s.
    ///
    /// Possible errors:
    ///   - `Error::SolverError` if the solver query fails
    ///   - `Error::FailedToResolveFunctionPointer` if it finds that it is possible
    ///     that the `BV` points to something that's not a `Function` in the
    ///     `Project`
    pub(crate) fn interpret_as_function_ptr(
        &mut self,
        bv: B::BV,
        n: usize,
    ) -> Result<PossibleSolutions<Callable<'p, B>>> {
        if n == 0 {
            unimplemented!("n == 0 in interpret_as_function_ptr")
        }

        // First try to interpret without a full solve (i.e., with `as_u64()`)
        let addrs: Vec<u64> = match bv.as_u64() {
            Some(addr) => vec![addr], // there is only one possible solution, and it's this `addr`
            None => {
                // Check if whatever solution we used last time for this `Location` still applies
                // (see notes on the `function_ptr_cache` field of `State`)
                match self.function_ptr_cache.get(&self.cur_loc) {
                    Some(addr)
                        if self
                            .bvs_must_be_equal(&bv, &self.bv_from_u64(*addr, bv.get_width()))? =>
                    {
                        vec![*addr]
                    },
                    _ => {
                        // Ok, use `get_possible_solutions_for_bv()`
                        match self
                            .get_possible_solutions_for_bv(&bv, n)?
                            .as_u64_solutions()
                            .unwrap()
                        {
                            PossibleSolutions::Exactly(v) => v.into_iter().collect(),
                            PossibleSolutions::AtLeast(v) => v.into_iter().collect(),
                        }
                    },
                }
            },
        };

        // save the value we found into the cache for next time
        if addrs.len() == 1 {
            self.function_ptr_cache
                .insert(self.cur_loc.clone(), addrs[0]);
        }

        let callables = addrs
            .into_iter()
            .map(|addr| {
                self.global_allocations
                    .get_func_for_address(addr, self.cur_loc.module)
                    .ok_or_else(|| Error::FailedToResolveFunctionPointer(addr))
            })
            .collect::<Result<HashSet<_>>>()?;
        if callables.len() > n {
            Ok(PossibleSolutions::AtLeast(callables))
        } else {
            Ok(PossibleSolutions::Exactly(callables))
        }
    }

    /// Get a pointer to the given function name. The name must be the
    /// fully-mangled function name, as it appears in the LLVM. The name will be
    /// resolved in the current module; this means that it will first look for a
    /// module-private (e.g., C `static`) definition in the current module, then
    /// search for a public definition in the same or different module. It will
    /// never return a module-private definition from a different module.
    ///
    /// Returns `None` if no function was found with that name.
    pub fn get_pointer_to_function(&self, funcname: impl Into<String>) -> Option<&B::BV> {
        self.global_allocations
            .get_global_allocation(&Name::from(funcname.into()), self.cur_loc.module)
            .map(|ga| ga.get_addr())
    }

    /// Get a pointer to the currently active _hook_ for the given function name.
    ///
    /// Returns `None` if no function was found with that name, _or_ if there is no currently
    /// active hook for that function.
    pub fn get_pointer_to_function_hook(&self, funcname: &str) -> Option<&B::BV> {
        self.global_allocations
            .get_function_hook_address(self.config.function_hooks.get_hook_for(funcname)?)
    }

    /// Get a `Function` by name. The name must be the fully-mangled function
    /// name, as it appears in the LLVM. The name will be resolved in the current
    /// module; this means that it will first look for a module-private (e.g., C
    /// `static`) definition in the current module, then search for a public
    /// definition in the same or different module. It will never return a
    /// module-private definition from a different module.
    ///
    /// Also returns the `Module` in which the prevailing definition of the `Function` was found.
    ///
    /// Returns `None` if no function was found with that name.
    pub fn get_func_by_name(
        &self,
        funcname: impl Into<String>,
    ) -> Option<(&'p Function, &'p Module)> {
        let funcname = funcname.into();
        self.global_allocations
            .get_global_allocation(&Name::from(funcname.clone()), self.cur_loc.module)
            .and_then(|ga| match ga {
                GlobalAllocation::Function { func, module, .. } => Some((*func, *module)),
                GlobalAllocation::GlobalVariable { .. } => panic!(
                    "get_func_by_name: {} refers to a global variable, not a function",
                    funcname
                ),
            })
    }

    /// Read a value `bits` bits long from memory at `addr`.
    /// Note that `bits` can be arbitrarily large.
    pub fn read(&self, addr: &B::BV, bits: u32) -> Result<B::BV> {
        let retval = match self.mem.borrow().read(addr, bits) {
            Ok(val) => val,
            e @ Err(Error::NullPointerDereference) => {
                if self.config.null_pointer_checking == NullPointerChecking::SplitPath {
                    // save a backtracking point to re-execute the current
                    // instruction with the address constrained to be non-null,
                    // and continue from there
                    self.save_backtracking_point_at_location(
                        self.cur_loc.clone(),
                        addr._ne(&self.zero(addr.get_width())),
                    );
                }
                return e; // report the null-pointer dereference
            },
            e @ Err(_) => return e, // propagate any other kind of error
        };
        for (name, watchpoint) in self.mem_watchpoints.get_triggered_watchpoints(addr, bits)? {
            let pretty_loc = if self.config.print_module_name {
                self.cur_loc.to_string_with_module()
            } else {
                self.cur_loc.to_string_no_module()
            };
            info!(
                "Memory watchpoint {:?} {} read by {{{}}}",
                name, watchpoint, pretty_loc
            );
        }
        Ok(retval)
    }

    /// Write a value into memory at `addr`.
    /// Note that `val` can be an arbitrarily large bitvector.
    pub fn write(&mut self, addr: &B::BV, val: B::BV) -> Result<()> {
        self.write_without_mut(addr, val)
    }

    /// For internal use: since `self.mem` is a `RefCell`, we can write even
    /// without having a `&mut self` reference. This is necessary to support,
    /// for instance, lazy global initialization. But, we don't want to skip
    /// watchpoint checks by calling `self.mem.borrow_mut()` directly, so we
    /// have this
    fn write_without_mut(&self, addr: &B::BV, val: B::BV) -> Result<()> {
        let write_width = val.get_width();
        let result = self.mem.borrow_mut().write(addr, val);
        // we do this awkward `let result` / `match result` because it forces
        // the mutable borrow of self.mem to end, which is necessary because
        // save_backtracking_point_at_location requires a borrow of self.mem
        match result {
            Ok(()) => (),
            e @ Err(Error::NullPointerDereference) => {
                if self.config.null_pointer_checking == NullPointerChecking::SplitPath {
                    // save a backtracking point to re-execute the current
                    // instruction with the address constrained to be non-null,
                    // and continue from there
                    self.save_backtracking_point_at_location(
                        self.cur_loc.clone(),
                        addr._ne(&self.zero(addr.get_width())),
                    );
                }
                return e; // report the null-pointer dereference
            },
            e @ Err(_) => return e, // propagate any other kind of error
        };
        for (name, watchpoint) in self
            .mem_watchpoints
            .get_triggered_watchpoints(addr, write_width)?
        {
            let pretty_loc = if self.config.print_module_name {
                self.cur_loc.to_string_with_module()
            } else {
                self.cur_loc.to_string_no_module()
            };
            // Log the new value of the watched location (regardless of which part of the watched location the write may have touched).
            // Note that the write operation itself has already been performed, so we get the updated value with a `read()`.
            let watchpoint_low =
                self.bv_from_u64(watchpoint.get_lower_bound(), self.pointer_size_bits);
            let watchpoint_size_bits =
                (watchpoint.get_upper_bound() - watchpoint.get_lower_bound() + 1) * 8;
            let new_value = self
                .mem
                .borrow()
                .read(&watchpoint_low, watchpoint_size_bits as u32)?; // performs a read without using `state.read()` which would trigger watchpoints (we don't want to trigger watchpoints with this read)
            info!(
                "Memory watchpoint {:?} {} written by {{{}}}; new value is {:?}",
                name, watchpoint, pretty_loc, new_value
            );
        }
        Ok(())
    }

    /// Get the size of the `Type`, in bits.
    ///
    /// Accounts for the `Project`'s pointer size and named struct definitions.
    ///
    /// Panics if `ty` is a struct which has no definition in the entire `Project`,
    /// or if it is a struct/array/vector where one of the elements is a struct with no
    /// definition in the entire `Project`.
    #[deprecated = "Prefer size_in_bits()"]
    pub fn size(&self, ty: &Type) -> u32 {
        self.proj
            .size_in_bits(ty)
            .expect("state.size() encountered a struct with no definition in the entire Project")
    }

    /// Get the size of the `Type`, in bits.
    ///
    /// Accounts for the `Project`'s pointer size and named struct definitions.
    ///
    /// Returns `None` for structs which have no definition in the entire `Project`,
    /// or for structs/arrays/vectors where one of the elements is a struct with no
    /// definition in the entire `Project`.
    #[deprecated = "Renamed to size_in_bits()"]
    pub fn size_opaque_aware(&self, ty: &Type, _proj: &'p Project) -> Option<u32> {
        self.proj.size_in_bits(ty)
    }

    /// Get the size of the `Type`, in bits.
    ///
    /// Accounts for the `Project`'s pointer size and named struct definitions.
    ///
    /// Returns `None` for structs which have no definition in the entire `Project`,
    /// or for structs/arrays/vectors where one of the elements is a struct with no
    /// definition in the entire `Project`.
    pub fn size_in_bits(&self, ty: &Type) -> Option<u32> {
        self.proj.size_in_bits(ty)
    }

    /// Get the size of the `FPType`, in bits
    #[deprecated = "Renamed to fp_size_in_bits"]
    pub fn fp_size(fpt: FPType) -> u32 {
        Self::fp_size_in_bits(fpt)
    }

    pub fn fp_size_in_bits(fpt: FPType) -> u32 {
        match fpt {
            FPType::Half => 16,
            FPType::Single => 32,
            FPType::Double => 64,
            FPType::FP128 => 128,
            FPType::X86_FP80 => 80,
            FPType::PPC_FP128 => 128,
        }
    }

    /// Get the offset (in _bytes_) of the element at the given index, as well as the
    /// `Type` of the element at that index.
    ///
    /// If `base_type` is a `NamedStructType`, the struct should be defined in the current module.
    pub fn get_offset_constant_index(
        &self,
        base_type: &Type,
        index: usize,
    ) -> Result<(u32, TypeRef)> {
        match base_type {
            Type::PointerType {
                pointee_type: element_type,
                ..
            }
            | Type::ArrayType { element_type, .. }
            | Type::VectorType { element_type, .. } => {
                let el_size_bits = self.size_in_bits(element_type).ok_or_else(|| {
                    Error::MalformedInstruction(format!(
                        "get_offset encountered an opaque struct type: {:?}",
                        element_type
                    ))
                })?;
                if el_size_bits % 8 != 0 {
                    Err(Error::UnsupportedInstruction(format!(
                        "Encountered a type with size {} bits",
                        el_size_bits
                    )))
                } else {
                    let el_size_bytes = el_size_bits / 8;
                    let index: u32 = index.try_into().unwrap();
                    Ok((index * el_size_bytes, element_type.clone()))
                }
            },
            Type::StructType { element_types, .. } => {
                let mut offset_bits = 0;
                for ty in element_types.iter().take(index) {
                    let element_size_bits = self.size_in_bits(ty).ok_or_else(|| {
                        Error::MalformedInstruction(format!(
                            "get_offset encountered an opaque struct type: {:?}",
                            ty
                        ))
                    })?;
                    offset_bits += element_size_bits;
                }
                if offset_bits % 8 != 0 {
                    Err(Error::UnsupportedInstruction(format!(
                        "Struct offset of {} bits",
                        offset_bits
                    )))
                } else {
                    Ok((offset_bits / 8, element_types[index].clone()))
                }
            },
            Type::NamedStructType { name } => {
                match self.cur_loc.module.types.named_struct_def(name) {
                    None => Err(Error::MalformedInstruction(format!(
                        "get_offset on a struct type not found in the current module: {:?}",
                        name
                    ))),
                    Some(NamedStructDef::Opaque) => Err(Error::MalformedInstruction(format!(
                        "get_offset on an opaque struct type: {:?}",
                        name
                    ))),
                    Some(NamedStructDef::Defined(ty)) => self.get_offset_constant_index(&ty, index),
                }
            },
            _ => panic!("get_offset_constant_index with base type {:?}", base_type),
        }
    }

    /// Get the offset (in _bytes_) of the element at the given index, as well as a
    /// reference to the `Type` of the element at that index.
    ///
    /// This function differs from `get_offset_constant_index` in that it takes an
    /// arbitrary `BV` as index instead of a `usize`, and likewise returns its offset
    /// as a `BV`.
    ///
    /// The result `BV` will have the same width as the input `index`.
    pub fn get_offset_bv_index<'t, V: BV>(
        &self,
        base_type: &'t Type,
        index: &V,
        solver: V::SolverRef,
    ) -> Result<(V, &'t Type)> {
        match base_type {
            Type::PointerType { pointee_type: element_type, .. }
            | Type::ArrayType { element_type, .. }
            | Type::VectorType { element_type, .. }
            => {
                let el_size_bits = self.size_in_bits(element_type)
                    .ok_or_else(|| Error::OtherError(format!("get_offset encountered an opaque struct type: {:?}", element_type)))?;
                if el_size_bits % 8 != 0 {
                    Err(Error::UnsupportedInstruction(format!("Encountered a type with size {} bits", el_size_bits)))
                } else {
                    let el_size_bytes = el_size_bits / 8;
                    Ok((index.mul(&V::from_u64(solver, el_size_bytes as u64, index.get_width())), &element_type))
                }
            },
            Type::StructType { .. } | Type::NamedStructType { .. } => {
                Err(Error::MalformedInstruction("Index into struct type must be constant; consider using `get_offset_constant_index` instead of `get_offset_bv_index`".to_owned()))
            },
            _ => panic!("get_offset_bv_index with base type {:?}", base_type),
        }
    }

    /// Add a memory watchpoint. It will be enabled unless/until
    /// `disable_watchpoint()` is called on it.
    ///
    /// If a watchpoint with the same name was previously added, this will
    /// replace that watchpoint and return `true`. Otherwise, this will return
    /// `false`.
    ///
    /// When any watched memory is read or written to, an INFO-level log message
    /// will be generated.
    pub fn add_mem_watchpoint(&mut self, name: impl Into<String>, watchpoint: Watchpoint) -> bool {
        self.mem_watchpoints.add(name, watchpoint)
    }

    /// Remove the memory watchpoint with the given `name`.
    ///
    /// Returns `true` if the operation was successful, or `false` if no
    /// watchpoint with that name was found.
    pub fn rm_mem_watchpoint(&mut self, name: &str) -> bool {
        self.mem_watchpoints.remove(name)
    }

    /// Disable the memory watchpoint with the given `name`. Disabled
    /// watchpoints will not generate any log messages unless/until
    /// `enable_watchpoint()` is called on them.
    ///
    /// Returns `true` if the operation is successful, or `false` if no
    /// watchpoint with that name was found. Disabling an already-disabled
    /// watchpoint will have no effect and will return `true`.
    pub fn disable_watchpoint(&mut self, name: &str) -> bool {
        self.mem_watchpoints.disable(name)
    }

    /// Enable the memory watchpoint(s) with the given name.
    ///
    /// Returns `true` if the operation is successful, or `false` if no
    /// watchpoint with that name was found. Enabling an already-enabled
    /// watchpoint will have no effect and will return `true`.
    pub fn enable_watchpoint(&mut self, name: &str) -> bool {
        self.mem_watchpoints.enable(name)
    }

    /// Allocate a value of size `bits`; return a pointer to the newly allocated object
    pub fn allocate(&mut self, bits: impl Into<u64>) -> B::BV {
        let raw_ptr = self.alloc.alloc(bits);
        self.bv_from_u64(raw_ptr, self.pointer_size_bits)
    }

    /// Get the size, in bits, of the allocation at the given address, or `None`
    /// if that address is not the result of an `alloc()`.
    pub fn get_allocation_size(&mut self, addr: &B::BV) -> Result<Option<u64>> {
        // First try to obtain the address without a full solve (i.e., with `as_u64()`)
        match addr.as_u64() {
            Some(addr) => Ok(self.alloc.get_allocation_size(addr)),
            None => {
                match self.get_possible_solutions_for_bv(addr, 1)? {
                    PossibleSolutions::AtLeast(_) => Err(Error::OtherError(format!(
                        "get_allocation_size: address is not a constant: {:?}",
                        addr
                    ))), // must be at least 2 solutions, since we passed in n==1
                    PossibleSolutions::Exactly(v) => {
                        let addr =
                            v.iter()
                                .next()
                                .ok_or(Error::Unsat)?
                                .as_u64()
                                .ok_or_else(|| {
                                    Error::OtherError(
                                        "get_allocation_size: address is more than 64 bits wide"
                                            .to_owned(),
                                    )
                                })?;
                        Ok(self.alloc.get_allocation_size(addr))
                    },
                }
            },
        }
    }

    /// Record the current location as a `PathEntry` in the current path.
    pub fn record_path_entry(&mut self) {
        let entry = PathEntry(self.cur_loc.clone());
        debug!("Recording a path entry {:?}", entry);
        self.path.push(entry);
    }

    /// Get the `PathEntry`s that have been recorded, in order
    pub fn get_path(&self) -> &Vec<PathEntry<'p>> {
        &self.path
    }

    /// Record entering a normal `Call` at the current location
    pub fn push_callsite(&mut self, call: &'p instruction::Call) {
        self.push_generic_callsite(Either::Left(call))
    }

    /// Record entering the given `Invoke` at the current location
    pub fn push_invokesite(&mut self, invoke: &'p terminator::Invoke) {
        self.push_generic_callsite(Either::Right(invoke))
    }

    fn push_generic_callsite(
        &mut self,
        instr: Either<&'p instruction::Call, &'p terminator::Invoke>,
    ) {
        self.stack.push(StackFrame {
            callsite: Callsite {
                loc: self.cur_loc.clone(),
                instr,
            },
            // TODO: taking this `restore_info` every time a callsite is pushed
            // may be expensive, and is only necessary if the call we're going
            // to make will eventually (directly or indirectly) recurse. In the
            // future we could check the LLVM 'norecurse' attribute to know when
            // this is not necessary.
            restore_info: self
                .varmap
                .get_restore_info_for_fn(self.cur_loc.func.name.clone()),
        })
    }

    /// Record leaving the current function. Returns the `Callsite` at which the
    /// current function was called, or `None` if the current function was the
    /// top-level function.
    ///
    /// Also restores the caller's local variables.
    pub fn pop_callsite(&mut self) -> Option<Callsite<'p>> {
        if let Some(StackFrame {
            callsite,
            restore_info,
        }) = self.stack.pop()
        {
            self.varmap.restore_fn_vars(restore_info);
            Some(callsite)
        } else {
            None
        }
    }

    /// Returns the current callstack depth. `0` indicates we're in the toplevel
    /// function, `1` indicates we're in a function directly called by the
    /// toplevel function, etc.
    pub fn current_callstack_depth(&self) -> usize {
        self.stack.len()
    }

    /// Save the current state, about to enter the `BasicBlock` with the given `Name` (which must be
    /// in the same `Module` and `Function` as `state.cur_loc`), as a backtracking point.
    /// The constraint will be added only if we end up backtracking to this point, and only then.
    pub fn save_backtracking_point(&mut self, bb_to_enter: &Name, constraint: B::BV) {
        debug!(
            "Saving a backtracking point, which would enter bb {:?} with constraint {:?}",
            bb_to_enter, constraint
        );
        let bb_to_enter = self
            .cur_loc
            .func
            .get_bb_by_name(&bb_to_enter)
            .unwrap_or_else(|| {
                panic!(
                    "Failed to find bb named {} in function {:?}",
                    bb_to_enter, self.cur_loc.func.name
                )
            });
        let backtrack_loc = Location {
            module: self.cur_loc.module,
            func: self.cur_loc.func,
            bb: bb_to_enter,
            instr: BBInstrIndex::Instr(0),
            source_loc: None,
        };
        self.save_backtracking_point_at_location(backtrack_loc, constraint);
    }

    /// Internal version of `save_backtracking_point()` which takes an arbitrary
    /// `Location` instead of just the basic block to start at.
    ///
    /// Also it doesn't require `&mut self`. This allows us to save backtracking
    /// points even when we're inside methods that only have `&self`.
    fn save_backtracking_point_at_location(
        &self,
        loc_to_start_at: Location<'p>,
        constraint: B::BV,
    ) {
        self.solver.push(1);
        self.backtrack_points.borrow_mut().push(BacktrackPoint {
            loc: loc_to_start_at,
            stack: self.stack.clone(),
            constraint,
            varmap: self.varmap.clone(),
            mem: self.mem.borrow().clone(),
            path_len: self.path.len(),
        });
    }

    /// returns `Ok(true)` if the operation was successful, `Ok(false)` if there are
    /// no saved backtracking points, or `Err` for other errors
    pub fn revert_to_backtracking_point(&mut self) -> Result<bool> {
        if let Some(bp) = self.backtrack_points.borrow_mut().pop() {
            debug!("Reverting to backtracking point {}", bp);
            self.solver.pop(1);
            self.varmap = bp.varmap;
            self.mem.replace(bp.mem);
            self.stack = bp.stack;
            self.path.truncate(bp.path_len);
            self.cur_loc = bp.loc;
            bp.constraint.assert()?;
            Ok(true)
        } else {
            Ok(false)
        }
    }

    /// returns the number of saved backtracking points
    pub fn count_backtracking_points(&self) -> usize {
        self.backtrack_points.borrow().len()
    }

    /// returns a `String` containing a formatted view of the current backtrace
    /// (in terms of LLVM locations, and possibly also source locations depending
    /// on the `Config`)
    pub fn pretty_backtrace(&self) -> String {
        let mut locdescrs = std::iter::once(LocationDescription::from(self.cur_loc.clone()))
            .chain(
                self.stack
                    .iter()
                    .rev()
                    .map(|frame| LocationDescription::from(frame.callsite.loc.clone())),
            )
            .collect::<Vec<LocationDescription>>();
        for locdescr in locdescrs.iter_mut() {
            self.demangle_locdescr(locdescr);
        }
        locdescrs
            .into_iter()
            .zip(1 ..)
            .map(|(locdescr, framenum)| {
                let pretty_locdescr = if self.config.print_module_name {
                    locdescr.to_string_with_module()
                } else {
                    locdescr.to_string_no_module()
                };
                let mut frame_string = format!("  #{}: {}\n", framenum, pretty_locdescr);
                match locdescr.source_loc {
                    Some(source_loc) if self.config.print_source_info => {
                        frame_string
                            .push_str(&format!("         ({})\n", pretty_source_loc(source_loc)));
                    },
                    _ => {},
                };
                frame_string
            })
            .collect()
    }

    /// returns a `String` containing a formatted view of the full path which led
    /// to this point, in terms of LLVM locations
    pub fn pretty_path_llvm(&self) -> String {
        let mut path_str = String::new();
        for path_entry in self.get_path() {
            path_str.push_str(&format!(
                "  {}\n",
                if self.config.print_module_name {
                    path_entry.to_string_with_module()
                } else {
                    path_entry.to_string_no_module()
                },
            ));
        }
        path_str
    }

    /// returns a `String` containing a formatted view of the full path which led
    /// to this point, in terms of source locations
    pub fn pretty_path_source(&self) -> String {
        let mut path_str = String::new();
        let mut source_locs = self
            .get_path()
            .iter()
            .flat_map(|path_entry| path_entry.get_all_source_locs());
        // handle the first one special, so we can print this help message if necessary
        match source_locs.next() {
            None => {
                path_str.push_str("  No source locations available in the path.\n");
                path_str.push_str(
                    "  This may be because the LLVM bitcode was not compiled with debuginfo.\n",
                );
                path_str.push_str(
                    "  To compile C/C++ or Rust sources with debuginfo, pass the `-g` flag\n",
                );
                path_str.push_str("    to `clang`, `clang++`, or `rustc`.\n");
            },
            Some(first_source_loc) => {
                path_str.push_str(&format!("  {}\n", pretty_source_loc(first_source_loc)))
            },
        }
        for source_loc in source_locs {
            path_str.push_str(&format!("  {}\n", pretty_source_loc(source_loc)));
        }
        path_str
    }

    /// returns a `String` containing a formatted view of the full path which led
    /// to this point, in terms of both LLVM and source locations (interleaved
    /// appropriately)
    pub fn pretty_path_interleaved(&self) -> String {
        let mut path_str = String::new();
        for path_entry in self.get_path() {
            path_str.push_str(&format!(
                "  {}:\n",
                if self.config.print_module_name {
                    path_entry.to_string_with_module()
                } else {
                    path_entry.to_string_no_module()
                },
            ));
            let mut source_locs = path_entry.get_all_source_locs();
            // handle the first one special, so we can print this help message if necessary
            match source_locs.next() {
                None => path_str.push_str("    (no source locations available)\n"),
                Some(first_source_loc) => {
                    path_str.push_str(&format!("    {}\n", pretty_source_loc(first_source_loc)))
                },
            }
            for source_loc in source_locs {
                path_str.push_str(&format!("    {}\n", pretty_source_loc(source_loc)));
            }
        }
        path_str
    }

    /// Attempt to demangle the given `funcname` as appropriate based on the
    /// `Config`.
    ///
    /// If this fails to demangle `funcname`, it just returns a copy of
    /// `funcname` unchanged.
    pub fn demangle(&self, funcname: &str) -> String {
        match self.config.demangling {
            Some(demangling) => demangling.maybe_demangle(funcname),
            None => panic!("Demangling shouldn't be None here"), // we should resolve it to Some() in the State constructor
        }
    }

    /// Attempts to demangle the function name in the `LocationDescription`, as
    /// appropriate based on the `Config`.
    fn demangle_locdescr(&self, locdescr: &mut LocationDescription) {
        locdescr.funcname = self.demangle(&locdescr.funcname);
    }

    /// Get the most recent `BV` created for each `Name` in the current function.
    /// Returns pairs of the `Name` and the `BV` assigned to that `Name`.
    ///
    /// Returned pairs will be sorted by `Name`.
    pub fn all_vars_in_cur_fn(&self) -> impl Iterator<Item = (&Name, &B::BV)> {
        self.varmap.get_all_vars_in_fn(&self.cur_loc.func.name)
    }

    /// returns a `String` describing a set of satisfying assignments for all variables
    pub fn current_assignments_as_pretty_string(&self) -> Result<String> {
        self.solver.set_opt(BtorOption::ModelGen(ModelGen::All));
        let string = if self.sat()? {
            let printed = self.solver.print_model();
            let sorted = itertools::sorted(printed.lines());
            sorted.fold(String::new(), |s, line| s + "\n" + line)
        } else {
            "<state is unsatisfiable>".to_owned()
        };
        self.solver
            .set_opt(BtorOption::ModelGen(ModelGen::Disabled));
        Ok(string)
    }

    /// Returns a `String` describing both the error and the context in which it
    /// occurred (backtrace, full path to error, variable values at the point of
    /// error, etc). Exactly which information is included is partially dependent
    /// on the environment variables `HAYBALE_DUMP_PATH` and `HAYBALE_DUMP_VARS`,
    /// as explained in the message.
    pub fn full_error_message_with_context(&self, e: Error) -> String {
        let mut err_msg = format!("{}\n\n", e);
        err_msg.push_str(&format!("Backtrace:\n{}\n", self.pretty_backtrace()));
        match PathDumpType::get_from_env_var() {
            PathDumpType::None => {
                err_msg.push_str("note: For a dump of the path that led to this error, rerun with the environment variable `HAYBALE_DUMP_PATH` set to:\n");
                err_msg
                    .push_str("        `LLVM` for a list of the LLVM basic blocks in the path\n");
                err_msg.push_str(
                    "        `SRC` for a list of the source-language locations in the path\n",
                );
                err_msg.push_str("        `BOTH` for both of the above\n");
                err_msg.push_str(
                    "      To get source-language locations, the LLVM bitcode must also contain\n",
                );
                err_msg.push_str("      debuginfo. For example, C/C++ or Rust sources must be compiled with the\n");
                err_msg.push_str("      `-g` flag to `clang`, `clang++`, or `rustc`.\n");
            },
            PathDumpType::LLVM => {
                err_msg.push_str("LLVM path to error:\n");
                err_msg.push_str(&self.pretty_path_llvm());
                err_msg.push_str("note: to also get a dump of the source-language locations in this path, rerun with `HAYBALE_DUMP_PATH=BOTH`.\n");
            },
            PathDumpType::Source => {
                err_msg.push_str("Source-language path to error:\n");
                err_msg.push_str(&self.pretty_path_source());
                err_msg.push_str("note: to also get a dump of the LLVM basic blocks in this path, rerun with `HAYBALE_DUMP_PATH=BOTH`.\n");
            },
            PathDumpType::Interleaved => {
                err_msg.push_str("Full path to error:\n");
                err_msg.push_str(&self.pretty_path_interleaved());
            },
        }
        if std::env::var("HAYBALE_DUMP_VARS") == Ok("1".to_owned()) {
            err_msg
                .push_str("\nLatest values of variables at time of error, in current function:\n");
            err_msg.push_str("(Ignore any values from past the point of error, they may be from other paths)\n\n");
            for (varname, value) in self.all_vars_in_cur_fn() {
                err_msg.push_str(&format!("  {}: {:?}\n", varname, value));
            }
        } else {
            err_msg.push_str("\nnote: For a dump of variable values at time of error, rerun with `HAYBALE_DUMP_VARS=1` environment variable.\n");
        }
        err_msg.push_str("\nnote: to enable detailed logs, ensure that debug-level logging messages are visible.\n");
        err_msg.push_str("  See the documentation for your chosen logging backend (e.g., env_logger, log4rs, etc)\n");
        err_msg.push_str("  for help with configuration.\n");
        err_msg.push_str("\n");
        err_msg
    }
}

#[derive(PartialEq, Eq, Clone, Copy, Debug)]
enum PathDumpType {
    /// Don't dump the path
    None,
    /// Dump just the LLVM path
    LLVM,
    /// Dump just the source path
    Source,
    /// Dump both LLVM and source path (interleaved)
    Interleaved,
}

impl PathDumpType {
    fn get_from_env_var() -> Self {
        match std::env::var("HAYBALE_DUMP_PATH") {
            Err(_) => Self::None,
            Ok(mut val) => {
                val.make_ascii_uppercase();
                match val.deref() {
                    "" => Self::None,
                    "LLVM" => Self::LLVM,
                    "SRC" => Self::Source,
                    "BOTH" => Self::Interleaved,
                    "1" => Self::Interleaved, // previous versions of `haybale` used HAYBALE_DUMP_PATH=1, we now treat that equivalently to `BOTH`
                    _ => Self::Interleaved,
                }
            },
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::solver_utils::SolutionCount;
    use crate::test_utils::*;

    // we don't include tests here for Memory, Alloc, VarMap, or Watchpoints; those are tested in their own modules.
    // Instead, here we just test the nontrivial functionality that `State` has itself.
    // We do repeat many of the tests from the `solver_utils` module, making sure that they also pass when
    // we use the `State` interfaces.

    #[test]
    fn sat() -> Result<()> {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // empty state should be sat
        assert_eq!(state.sat(), Ok(true));

        // adding True constraint should still be sat
        state.bv_from_bool(true).assert();
        assert_eq!(state.sat(), Ok(true));

        // adding x > 0 constraint should still be sat
        let x = state.new_bv_with_name(Name::from("x"), 64)?;
        x.sgt(&state.zero(64)).assert();
        assert_eq!(state.sat(), Ok(true));

        Ok(())
    }

    #[test]
    fn unsat() -> Result<()> {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let state = blank_state(&project, "test_func");

        // adding False constraint should be unsat
        state.bv_from_bool(false).assert();
        assert_eq!(state.sat(), Ok(false));

        Ok(())
    }

    #[test]
    fn unsat_with_extra_constraints() -> Result<()> {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // adding x > 3 constraint should still be sat
        let x = state.new_bv_with_name(Name::from("x"), 64)?;
        x.ugt(&state.bv_from_u64(3, 64)).assert();
        assert_eq!(state.sat(), Ok(true));

        // adding x < 3 constraint should make us unsat
        let bad_constraint = x.ult(&state.bv_from_u64(3, 64));
        assert_eq!(
            state.sat_with_extra_constraints(std::iter::once(&bad_constraint)),
            Ok(false)
        );

        // the state itself should still be sat, extra constraints weren't permanently added
        assert_eq!(state.sat(), Ok(true));

        Ok(())
    }

    #[test]
    fn get_a_solution() -> Result<()> {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // add x > 3 constraint
        let x = state.new_bv_with_name(Name::from("x"), 64)?;
        x.ugt(&state.bv_from_u64(3, 64)).assert();

        // check that the computed value of x is > 3
        let x_value = state
            .get_a_solution_for_bv(&x)
            .unwrap()
            .expect("Expected a solution for x")
            .as_u64()
            .unwrap();
        assert!(x_value > 3);

        Ok(())
    }

    #[test]
    fn possible_solutions() -> Result<()> {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // add x > 3 constraint
        let x = state.new_bv_with_name(Name::from("x"), 64)?;
        x.ugt(&state.bv_from_u64(3, 64)).assert();

        // check that there are more than 2 solutions
        let num_solutions = state.get_possible_solutions_for_bv(&x, 2).unwrap().count();
        assert_eq!(num_solutions, SolutionCount::AtLeast(3));

        // add x < 6 constraint
        x.ult(&state.bv_from_u64(6, 64)).assert();

        // check that there are now exactly two solutions
        let solutions = state
            .get_possible_solutions_for_bv(&x, 2)
            .unwrap()
            .as_u64_solutions();
        assert_eq!(solutions, Some([4, 5].iter().copied().collect()));

        // add x < 5 constraint
        x.ult(&state.bv_from_u64(5, 64)).assert();

        // check that there is now exactly one solution
        let solutions = state
            .get_possible_solutions_for_bv(&x, 2)
            .unwrap()
            .as_u64_solutions();
        assert_eq!(solutions, Some(PossibleSolutions::exactly_one(4)));

        // add x < 3 constraint
        x.ult(&state.bv_from_u64(3, 64)).assert();

        // check that there are now no solutions
        let solutions = state
            .get_possible_solutions_for_bv(&x, 2)
            .unwrap()
            .as_u64_solutions();
        assert_eq!(solutions, Some(PossibleSolutions::empty()));

        Ok(())
    }

    #[test]
    fn lookup_vars_via_operand() {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // create llvm-ir names
        let name1 = Name::from("val");
        let name2 = Name::from(2);

        // create corresponding BV values
        let var1 = state.new_bv_with_name(name1.clone(), 64).unwrap();
        let var2 = state.new_bv_with_name(name2.clone(), 1).unwrap(); // these clone()s wouldn't normally be necessary but we want to reuse the names to create `Operand`s later

        // check that we can look up the correct BV values via LocalOperands
        let op1 = Operand::LocalOperand {
            name: name1,
            ty: state.cur_loc.module.types.i32(),
        };
        let op2 = Operand::LocalOperand {
            name: name2,
            ty: state.cur_loc.module.types.bool(),
        };
        assert_eq!(state.operand_to_bv(&op1), Ok(var1));
        assert_eq!(state.operand_to_bv(&op2), Ok(var2));
    }

    #[test]
    fn const_bv() {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let state = blank_state(&project, "test_func");

        // create an llvm-ir value which is constant 3
        let constint = Constant::Int { bits: 64, value: 3 };

        // this should create a corresponding BV value which is also constant 3
        let bv = state
            .operand_to_bv(&Operand::ConstantOperand(ConstantRef::new(constint)))
            .unwrap();

        // check that the BV value was evaluated to 3
        let solution = state
            .get_a_solution_for_bv(&bv)
            .unwrap()
            .expect("Expected a solution for the bv")
            .as_u64()
            .unwrap();
        assert_eq!(solution, 3);
    }

    #[test]
    fn const_bool() {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let state = blank_state(&project, "test_func");

        // create llvm-ir constants true and false
        let consttrue = Constant::Int { bits: 1, value: 1 };
        let constfalse = Constant::Int { bits: 1, value: 0 };

        // this should create BV values true and false
        let bvtrue = state
            .operand_to_bv(&Operand::ConstantOperand(ConstantRef::new(consttrue)))
            .unwrap();
        let bvfalse = state
            .operand_to_bv(&Operand::ConstantOperand(ConstantRef::new(constfalse)))
            .unwrap();

        // check that the BV values are evaluated to true and false respectively
        assert_eq!(
            state
                .get_a_solution_for_bv(&bvtrue)
                .unwrap()
                .expect("Expected a solution for bvtrue")
                .as_bool()
                .unwrap(),
            true,
        );
        assert_eq!(
            state
                .get_a_solution_for_bv(&bvfalse)
                .unwrap()
                .expect("Expected a solution for bvfalse")
                .as_bool()
                .unwrap(),
            false,
        );

        // assert the first one, which should be true, so we should still be sat
        bvtrue.assert();
        assert_eq!(state.sat(), Ok(true));

        // assert the second one, which should be false, so we should be unsat
        bvfalse.assert();
        assert_eq!(state.sat(), Ok(false));
    }

    #[test]
    fn backtracking() -> Result<()> {
        let func = blank_function(
            "test_func",
            vec![Name::from("bb_start"), Name::from("bb_target")],
        );
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");
        state.record_path_entry();

        // assert x > 11
        let x = state.new_bv_with_name(Name::from("x"), 64)?;
        x.sgt(&state.bv_from_i64(11, 64)).assert();

        // create a backtrack point with constraint y > 5
        let y = state.new_bv_with_name(Name::from("y"), 64)?;
        let constraint = y.sgt(&state.bv_from_i64(5, 64));
        let bb = project
            .get_func_by_name("test_func")
            .map(|(func, _)| func)
            .expect("Expected to find function named 'test_func'")
            .get_bb_by_name(&Name::from("bb_target"))
            .expect("Expected to find bb named 'bb_target'");
        state.save_backtracking_point(&bb.name, constraint);

        // check that the constraint y > 5 wasn't added: adding y < 4 should keep us sat
        assert_eq!(
            state.sat_with_extra_constraints(std::iter::once(&y.slt(&state.bv_from_i64(4, 64)))),
            Ok(true),
        );

        // assert x < 8 to make us unsat
        x.slt(&state.bv_from_i64(8, 64)).assert();
        assert_eq!(state.sat(), Ok(false));

        // note the pre-rollback location
        let pre_rollback = state.cur_loc.clone();

        // roll back to backtrack point; check that we ended up at the right loc
        // and with the right path
        assert!(state.revert_to_backtracking_point().unwrap());
        assert_eq!(state.cur_loc.func, pre_rollback.func);
        assert_eq!(state.cur_loc.bb.name, bb.name);
        let path = state.get_path();
        assert_eq!(path.len(), 1);
        let path_entry = &path[0];
        assert_eq!(path_entry.0.module.name, "test_mod");
        assert_eq!(path_entry.0.func.name, "test_func");
        assert_eq!(path_entry.0.bb.name, Name::from("bb_start"));
        assert_eq!(path_entry.0.instr, BBInstrIndex::Instr(0));

        // check that the constraint x < 8 was removed: we're sat again
        assert_eq!(state.sat(), Ok(true));

        // check that the constraint y > 5 was added: y evaluates to something > 5
        assert!(
            state
                .get_a_solution_for_bv(&y)
                .unwrap()
                .expect("Expected a solution for y")
                .as_u64()
                .unwrap()
                > 5
        );

        // check that the first constraint remained in place: x > 11
        assert!(
            state
                .get_a_solution_for_bv(&x)
                .unwrap()
                .expect("Expected a solution for x")
                .as_u64()
                .unwrap()
                > 11
        );

        // check that trying to backtrack again fails
        assert!(!state.revert_to_backtracking_point().unwrap());

        Ok(())
    }

    #[test]
    fn fork() {
        let func = blank_function("test_func", vec![Name::from("test_bb")]);
        let project = blank_project("test_mod", func);
        let mut state = blank_state(&project, "test_func");

        // assert x < 42
        let x = state.new_bv_with_name(Name::from("x"), 64).unwrap();
        x.ult(&state.bv_from_u32(42, 64)).assert();

        // `y` is equal to `x + 7`
        let y = x.add(&state.bv_from_u32(7, 64));
        state.assign_bv_to_name(Name::from("y"), y).unwrap();

        // fork the state
        let mut state_2 = state.fork();

        // get the copies of `x` and `y` in each state, via operand lookups
        let op_x = Operand::LocalOperand {
            name: Name::from("x"),
            ty: state.cur_loc.module.types.i64(),
        };
        let op_y = Operand::LocalOperand {
            name: Name::from("y"),
            ty: state.cur_loc.module.types.i64(),
        };
        let x_1 = state.operand_to_bv(&op_x).unwrap();
        let x_2 = state_2.operand_to_bv(&op_x).unwrap();
        let y_1 = state.operand_to_bv(&op_y).unwrap();
        let y_2 = state_2.operand_to_bv(&op_y).unwrap();

        // in one state, we assert `x > 3`, while in the other, we assert `x < 3`
        x_1.ugt(&state.bv_from_u32(3, 64)).assert();
        x_2.ult(&state_2.bv_from_u32(3, 64)).assert();

        // check that in the first state, `y > 10` (looking up two different ways)
        let y_solution = state
            .get_a_solution_for_bv(&y_1)
            .unwrap()
            .expect("Expected a solution for y")
            .as_u64()
            .unwrap();
        assert!(y_solution > 10);
        let y_solution = state
            .get_a_solution_for_irname(&"test_func".to_owned(), &Name::from("y"))
            .unwrap()
            .expect("Expected a solution for y")
            .as_u64()
            .unwrap();
        assert!(y_solution > 10);

        // check that in the second state, `y < 10` (looking up two different ways)
        let y_2_solution = state_2
            .get_a_solution_for_bv(&y_2)
            .unwrap()
            .expect("Expected a solution for y_2")
            .as_u64()
            .unwrap();
        assert!(y_2_solution < 10);
        let y_2_solution = state_2
            .get_a_solution_for_irname(&"test_func".to_owned(), &Name::from("y"))
            .unwrap()
            .expect("Expected a solution for y_2")
            .as_u64()
            .unwrap();
        assert!(y_2_solution < 10);
    }
}