1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#[repr(u8)]
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub enum Automata {
    Dead = 0,
    Alive = 1,
}

impl Automata {
    pub fn from(number: usize) -> Self {
        match number {
            0 => Self::Dead,
            1 => Self::Alive,
            _ => panic!("not an automata")
        }
    }
    pub fn is_dead(&self) -> bool {
        match self {
            Automata::Dead => true,
            _ => false,
        }
    }

    pub fn is_alive(&self) -> bool {
        match self {
            Automata::Alive => true,
            _ => false,
        }
    }
}

use std::fmt;

impl fmt::Display for Automata {
    // This trait requires `fmt` with this exact signature.
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Automata::Dead => write!(f, "Dead"),
            Automata::Alive => write!(f, "Alive"),
        }
    }
}

/// Generic simulator for life of any rule set.
pub fn sim(center: Automata, neighbors: Vec<Automata>, birth: Vec<usize>, servival: Vec<usize>) -> Automata {
    let living_neighbors: usize = neighbors.iter().map(|a| *a as usize).sum();
    match center {
        Automata::Alive => {
            if servival.contains(&living_neighbors) {
                Automata::Alive
            } else {
                Automata::Dead
            }
        },
        Automata::Dead => {
            if birth.contains(&living_neighbors) {
                Automata::Alive
            } else {
                Automata::Dead
            }
        },
    }
}

pub fn simb3s23(center: Automata, n1: Automata, n2: Automata, n3: Automata, n4: Automata, n5: Automata, n6: Automata, n7: Automata, n8: Automata) -> Automata {
    let automatas = vec![n1, n2, n3, n4, n5, n6, n7, n8];
    let servival = vec![2, 3];
    let birth = vec![3];
    sim(center, automatas, birth, servival)
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::rc::Rc;
    use std::collections::hash_map::DefaultHasher;
    use std::hash::{Hash, Hasher};

    #[test]
    fn alive_count() {
        let a = Automata::Alive;
        assert_eq!(1, a as usize);
    }

    #[test]
    fn alive_count_as_rc() {
        let a = Rc::new(Automata::Alive);
        assert_eq!(1, *a as usize);
    }

    #[test]
    /// Only similar cells have the same hash.
    fn cells_hashed() {
        let c1 = Automata::Alive;
        let c2 = Automata::Alive;
        let c3 = Automata::Dead;
        assert_eq!(calculate_hash(&c1), calculate_hash(&c2));
        assert_ne!(calculate_hash(&c1), calculate_hash(&c3));
    }

    #[test]
    fn is_alive() {
        let a = Automata::Alive;
        assert_eq!(a.is_alive(), true);
        assert_eq!(a.is_dead(), false);
    }

    #[test]
    fn is_dead() {
        let a = Automata::Dead;
        assert_eq!(a.is_dead(), true);
        assert_eq!(a.is_alive(), false);
    }

    #[test]
    fn from() {
        let num = 1usize;
        let a = Automata::from(num);
        assert_eq!(a, Automata::Alive);
    }

    #[test]
    /// Ensure the Rc returns the same hash as Automata.
    fn cell_rcs_hashed() {
        let c1 = Rc::new(Automata::Alive);
        let c2 = Automata::Alive;
        let c3 = Rc::new(Automata::Dead);
        assert_eq!(calculate_hash(&c1), calculate_hash(&c2));
        assert_ne!(calculate_hash(&c1), calculate_hash(&c3));
    }

    fn calculate_hash<T: Hash>(t: &T) -> u64 {
        let mut s = DefaultHasher::new();
        t.hash(&mut s);
        s.finish()
    }
}