1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2016 hashindexed Developers
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Store a set of values in a data structure indexed by the hash of some
//! user-defined sub-property.
//! 
//! This works like a `HashSet<T>` with redefined equality and hash function on
//! T, but maintaining the usual definition of equality on T outside the
//! indexing.
//! 
//! See [`HashIndexed`](struct.HashIndexed.html) type for usage.

use std::collections::HashSet;
use std::collections::hash_set;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::borrow::Borrow;
use std::fmt;

/// Configures how values are indexd.
/// 
/// User should either implement `extract_key()` or implement `key_eq()` and
/// `key_hash()` (in the latter case, `extract_key()` technically needs an
/// implementation but will never be used, so it can simply panic).
/// 
/// Note that `contains()`, `get()`, `replace()` and `remove()` require
/// implementation of `extract_key()` in order to function correctly!
pub trait KeyComparator<T, K> where K: Eq + Hash {
    /// This function should return a key extracted from the value.
    /// `eq` and `hash` are implemented on this key.
    /// 
    /// Note that the implementation could simply panic if `key_eq()` and
    /// `key_hash()` are implemented instead; however some functions
    /// will not work in this case.
    fn extract_key(value: &T) -> &K;
    
    /// Test equality of keys extracted from given values u, v.
    fn key_eq(u: &T, v: &T) -> bool {
        Self::extract_key(u) == Self::extract_key(v)
    }
    
    /// Generate a hash of a key retrieved from a given value.
    fn key_hash<H: Hasher>(value: &T, state: &mut H) {
        Self::extract_key(value).hash(state)
    }
}

/// Internal type
pub struct IndexableValue<T, K, E> {
    phantom_k: PhantomData<K>,
    phantom_e: PhantomData<E>,
    value: T
}
impl<T, K, E> IndexableValue<T, K, E> {
    fn new(value: T) -> IndexableValue<T, K, E> {
        IndexableValue {
            phantom_k: PhantomData,
            phantom_e: PhantomData,
            value: value
        }
    }
}

impl<T, K, E> PartialEq<IndexableValue<T, K, E>> for IndexableValue<T, K, E>
    where E: KeyComparator<T, K>, K: Eq + Hash
{
    fn eq(&self, other: &IndexableValue<T, K, E>) -> bool {
        E::key_eq(&self.value, &other.value)
    }
}
impl<T, K, E> Eq for IndexableValue<T, K, E> where E: KeyComparator<T, K>, K: Eq + Hash {}
impl<T, K, E> Hash for IndexableValue<T, K, E> where E: KeyComparator<T, K>, K: Eq + Hash {
    fn hash<H: Hasher>(&self, state: &mut H) {
        E::key_hash(&self.value, state)
    }
}
impl<T, K, E> Borrow<K> for IndexableValue<T, K, E>
    where E: KeyComparator<T, K>, K: Eq + Hash
{
    fn borrow(&self) -> &K {
        E::extract_key(&self.value)
    }
}


/// Stores a set of values indexed in a user-defined way.
/// 
/// Use like this:
/// 
/// ```
/// use hashindexed::{HashIndexed, KeyComparator};
/// 
/// #[derive(Debug, Eq, PartialEq)]
/// struct MyType { num: i32, name: &'static str }
/// 
/// struct MyComparator;
/// impl KeyComparator<MyType, i32> for MyComparator {
///     fn extract_key(v: &MyType) -> &i32 { &v.num }
/// }
/// 
/// let mut container: HashIndexed<MyType, i32, MyComparator> =
///     HashIndexed::new();
/// 
/// container.insert(MyType { num: 1, name: "one" });
/// container.insert(MyType { num: 2, name: "two" });
/// container.insert(MyType { num: 3, name: "three" });
/// 
/// assert_eq!( container.remove(&1).unwrap().name, "one" );
/// assert_eq!( container.remove(&1), None );
/// assert!( container.contains(&2) );
/// assert_eq!( container.len(), 2 );
/// 
/// assert_eq!( container.get(&3).unwrap().name, "three" );
/// container.replace(MyType { num: 3, name: "THREE" });
/// assert_eq!( container.get(&3).unwrap().name, "THREE" );
/// ```
pub struct HashIndexed<T, K, E> {
    set: HashSet<IndexableValue<T, K, E>>
}

impl<T, K, E> HashIndexed<T, K, E>
    where E: KeyComparator<T, K>, K: Eq + Hash,
    IndexableValue<T, K, E>: Borrow<K>
{
    /// Creates an empty HashIndexed collection.
    pub fn new() -> HashIndexed<T, K, E> {
        HashIndexed { set: HashSet::new() }
    }
    
    /// Creates an empty HashIndexed with space for at least `capacity`
    /// elements in the hash table.
    pub fn with_capacity(capacity: usize) -> HashIndexed<T, K, E> {
        HashIndexed { set: HashSet::with_capacity(capacity) }
    }
    
    /// Returns the number of elements the collection can hold without reallocating.
    pub fn capacity(&self) -> usize {
        self.set.capacity()
    }
    
    /// Reserves capacity for at least `additional` more elements to be inserted
    /// in the collection. More spaces than this may be allocated to avoid
    /// frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new allocation size overflows `usize`.
    /// ```
    pub fn reserve(&mut self, additional: usize) {
        self.set.reserve(additional)
    }
    
    /// Shrinks the capacity of the collection as much as possible. It will
    /// drop down as much as possible while maintaining the internal rules
    /// and possibly leaving some space in accordance with the resize policy.
    /// ```
    pub fn shrink_to_fit(&mut self) {
        self.set.shrink_to_fit()
    }
    
    /// An iterator visiting all elements in arbitrary order.
    pub fn iter(&self) -> Iter<T, K, E> {
        Iter { iter: self.set.iter() }
    }

    /// Creates a consuming iterator, that is, one that moves each value out
    /// of the set in arbitrary order. The set cannot be used after calling
    /// this.
    pub fn into_iter(self) -> IntoIter<T, K, E> {
        IntoIter { iter: self.set.into_iter() }
    }
    
    /// Returns the number of elements in the collection.
    pub fn len(&self) -> usize { self.set.len() }

    /// Returns true if the collection contains no elements.
    pub fn is_empty(&self) -> bool { self.set.is_empty() }
    
    /// Clears the collection, removing all values.
    pub fn clear(&mut self) { self.set.clear() }
    
    /// Returns `true` if the collection contains a value matching the given
    /// key.
    pub fn contains(&self, k: &K) -> bool {
        self.set.contains(k)
    }
    /// Returns a reference to the value corresponding to the key.
    pub fn get(&self, k: &K) -> Option<&T> {
        self.set.get(k).map(|v| &v.value)
    }
    
    /// Adds a value to the set. Returns true if the value was not already
    /// present in the collection.
    pub fn insert(&mut self, value: T) -> bool {
        self.set.insert(IndexableValue::new(value))
    }
    
    /// Adds a value to the set, replacing the existing value, if any, that is
    /// equal to the given one. Returns the replaced value.
    pub fn replace(&mut self, value: T) -> Option<T> {
        //TODO: what's this `Recover::replace(&mut self.set, value)` thing?
        let removed = self.remove(E::extract_key(&value));
        self.insert(value);
        removed
    }
    
    /// Removes and returns the value in the collection, if any, that is equal
    /// to the given one.
    pub fn remove(&mut self, k: &K) -> Option<T> {
        // Note that 'take' in HashSet corresponds to 'remove' for values in
        // HashMap; this is because it was added after API stabilisation of the
        // existing 'remove' function.
        self.set.take(k).map(|v| v.value)
    }
}

impl<T, K, E> PartialEq for HashIndexed<T, K, E>
    where HashSet<IndexableValue<T, K, E>>: PartialEq
{
    fn eq(&self, other: &HashIndexed<T, K, E>) -> bool {
        self.set == other.set
    }
}

impl<T, K, E> Eq for HashIndexed<T, K, E>
    where HashIndexed<T, K, E>: PartialEq
{}

impl<T, K, E> fmt::Debug for HashIndexed<T, K, E>
    where HashSet<IndexableValue<T, K, E>>: fmt::Debug
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.set.fmt(f)
    }
}

/// HashIndexed iterator
pub struct Iter<'a, T: 'a, K: 'a, E: 'a> {
    iter: hash_set::Iter<'a, IndexableValue<T, K, E>>
}

/// HashIndexed move iterator
pub struct IntoIter<T, K, E> {
    iter: hash_set::IntoIter<IndexableValue<T, K, E>>
}

impl<'a, T, K, E> IntoIterator for &'a HashIndexed<T, K, E>
    where K: Eq + Hash, E: KeyComparator<T, K>,
    IndexableValue<T, K, E>: Borrow<K>
{
    type Item = &'a T;
    type IntoIter = Iter<'a, T, K, E>;
    fn into_iter(self) -> Iter<'a, T, K, E> {
        self.iter()
    }
}

impl<'a, T, K, E> IntoIterator for HashIndexed<T, K, E>
    where K: Eq + Hash, E: KeyComparator<T, K>
{
    type Item = T;
    type IntoIter = IntoIter<T, K, E>;
    fn into_iter(self) -> IntoIter<T, K, E> {
        self.into_iter()
    }
}

impl<'a, T, K, E> Iterator for Iter<'a, T, K, E> {
    type Item = &'a T;
    
    fn next(&mut self) -> Option<&'a T> { self.iter.next().map(|x| &x.value) }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<'a, T, K, E> ExactSizeIterator for Iter<'a, T, K, E> {
    fn len(&self) -> usize { self.iter.len() }
}

impl<T, K, E> Iterator for IntoIter<T, K, E> {
    type Item = T;

    fn next(&mut self) -> Option<T> { self.iter.next().map(|x| x.value) }
    fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<T, K, E> ExactSizeIterator for IntoIter<T, K, E> {
    fn len(&self) -> usize { self.iter.len() }
}