1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
//! Implements hash to curve as described in Section 8.7.1 of
//! <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
//! and Section 5 of
//!  <https://eprint.iacr.org/2019/403.pdf>

use crate::constants::bls381g1::*;
use crate::error::HashingError;
use crate::isogeny::bls381g1::*;
use crate::{expand_message_xmd, expand_message_xof, DomainSeparationTag};
use crate::{HashToCurveXmd, HashToCurveXof};
use amcl::arch::Chunk;
use amcl::bls381::{big::BIG, dbig::DBIG, ecp::ECP, rom};
use digest::generic_array::GenericArray;
use digest::{
    generic_array::typenum::{marker_traits::Unsigned, U128, U32, U48, U64, U96},
    BlockInput, Digest, ExtendableOutput, Input, Reset,
};
use failure::_core::fmt::Debug;
use std::{
    cmp::Ordering,
    fmt::{Display, Formatter, Result as FmtResult},
    str::FromStr,
};
use subtle::ConstantTimeEq;

/// To compute a `L` use the following formula
/// L = ceil(ceil(log2(p) + k) / 8). For example, in our case log2(p) = 381, k = 128
/// L = 64
type L = U64;
type TwoL = U128;

/// BLS12381G1_XMD:SHA-256_SSWU provides both
/// Random Oracle (RO)
/// Nonuniform (NU)
pub struct Bls12381G1Sswu {
    dst: DomainSeparationTag,
}

impl Bls12381G1Sswu {
    /// Create a new implementation with the default
    pub fn new(dst: DomainSeparationTag) -> Self {
        Self { dst }
    }
}

impl From<DomainSeparationTag> for Bls12381G1Sswu {
    fn from(dst: DomainSeparationTag) -> Self {
        Self { dst }
    }
}

impl HashToCurveXmd for Bls12381G1Sswu {
    type Output = G1;

    fn encode_to_curve_xmd<D: BlockInput + Digest<OutputSize = U32>>(
        &self,
        data: &[u8],
    ) -> Result<Self::Output, HashingError> {
        let u = hash_to_field_xmd_nu::<D>(data, &self.dst)?;
        Ok(encode_to_curve(u).into())
    }

    fn hash_to_curve_xmd<D: BlockInput + Digest<OutputSize = U32>>(
        &self,
        data: &[u8],
    ) -> Result<Self::Output, HashingError> {
        let (u0, u1) = hash_to_field_xmd_ro::<D>(data, &self.dst)?;
        Ok(hash_to_curve(u0, u1).into())
    }
}

impl HashToCurveXof for Bls12381G1Sswu {
    type Output = G1;

    fn encode_to_curve_xof<X: ExtendableOutput + Input + Reset + Default>(
        &self,
        data: &[u8],
    ) -> Result<Self::Output, HashingError> {
        let u = hash_to_field_xof_nu::<X>(data, &self.dst)?;
        Ok(encode_to_curve(u).into())
    }

    fn hash_to_curve_xof<X: ExtendableOutput + Input + Reset + Default>(
        &self,
        data: &[u8],
    ) -> Result<Self::Output, HashingError> {
        let (u0, u1) = hash_to_field_xof_ro::<X>(data, &self.dst)?;
        Ok(hash_to_curve(u0, u1).into())
    }
}

/// Represents a point on G1
#[derive(Copy, Clone)]
pub struct G1(pub ECP);

impl G1 {
    /// The bytes in G1 compressed form
    pub const COMPRESSED_BYTES: usize = rom::MODBYTES;
    /// The bytes in G1 uncompressed form
    pub const UNCOMPRESSED_BYTES: usize = 2 * rom::MODBYTES;
    const ECP_COMPRESSED: usize = Self::COMPRESSED_BYTES + 1;
    const ECP_UNCOMPRESSED: usize = Self::UNCOMPRESSED_BYTES + 1;
    const COMPRESSED_HEX_LENGTH: usize = Self::UNCOMPRESSED_BYTES;
    const UNCOMPRESSED_HEX_LENGTH: usize = Self::UNCOMPRESSED_BYTES * 2;

    /// Serialize the point to compressed bytes in big endian form
    /// Only the x-coordinate
    ///
    /// NOTE: Must use `GenericArray` due to rust error
    /// error[E0277]: arrays only have std trait implementations for lengths 0..=32
    /// The caller can use section 4.3 in https://tools.ietf.org/id/draft-jivsov-ecc-compact-05.html
    /// to reconstruct Y if needed
    pub fn to_bytes(&self) -> [u8; Self::COMPRESSED_BYTES] {
        let mut bytes = [0u8; Self::ECP_COMPRESSED];
        let mut temp = ECP::new();
        temp.copy(&self.0);
        temp.tobytes(bytes.as_mut(), true);
        // GenericArray::clone_from_slice(&bytes[1..])
        let mut output = [0u8; Self::COMPRESSED_BYTES];
        output.copy_from_slice(&bytes[1..]);
        // Store the value of y as the MSB
        output[0] |= (bytes[0] & 1) << 7;
        output
    }

    /// Serialize the point to uncompressed bytes in big endian form
    /// The x-coordinate followed by the y-coordinate
    /// NOTE: Must use `GenericArray` due to rust error
    /// error[E0277]: arrays only have std trait implementations for lengths 0..=32
    pub fn to_bytes_uncompressed(&self) -> [u8; Self::UNCOMPRESSED_BYTES] {
        let mut bytes = [0u8; Self::ECP_UNCOMPRESSED];
        let mut temp = ECP::new();
        temp.copy(&self.0);
        temp.tobytes(bytes.as_mut(), false);
        // GenericArray::clone_from_slice(&bytes[1..])
        let mut output = [0u8; Self::UNCOMPRESSED_BYTES];
        output.copy_from_slice(&bytes[1..]);
        output
    }

    /// Serialize the point to compressed lower hex string
    /// Only the x-coordinate
    pub fn encode_to_hex(&self) -> String {
        String::from_utf8(subtle_encoding::hex::encode(&self.to_bytes()[..])).unwrap()
    }

    /// Serialize the point to uncompressed lower hex string
    /// The x-coordinate followed by the y-coordinate
    pub fn encode_to_hex_uncompressed(&self) -> String {
        String::from_utf8(subtle_encoding::hex::encode(
            &self.to_bytes_uncompressed()[..],
        ))
        .unwrap()
    }

    /// Convenience method when x and y are supplied separately
    pub fn decode_from_hex_points(x: &str, y: &str) -> Result<Self, String> {
        let mut s = x.to_string();
        s.push_str(y);
        Self::from_str(s.as_str())
    }

    /// Convenience method when x and y are supplied separately
    pub fn from_byte_points<B: AsRef<[u8]>>(x: B, y: B) -> Result<G1, String> {
        let a = x.as_ref();
        if a.len() != Self::COMPRESSED_BYTES {
            return Err(format!(
                "Invalid number of bytes for x. Expected '{}', supplied '{}'",
                Self::COMPRESSED_BYTES,
                a.len()
            ));
        }
        let b = y.as_ref();
        if b.len() != Self::COMPRESSED_BYTES {
            return Err(format!(
                "Invalid number of bytes for y. Expected '{}', supplied '{}'",
                Self::COMPRESSED_BYTES,
                b.len()
            ));
        }

        let x = BIG::frombytes(&a);
        let y = BIG::frombytes(&b);
        Ok(Self(ECP::new_bigs(&x, &y)))
    }

    /// Helper function for `Display` and `Debug`
    fn format(&self, f: &mut Formatter<'_>) -> FmtResult {
        let mut x = self.0.getx();
        let mut y = self.0.gety();
        write!(f, "G1 {{ x: {}, y: {} }}", x.to_hex(), y.to_hex())
    }
}

impl PartialEq<ECP> for G1 {
    fn eq(&self, other: &ECP) -> bool {
        self.0.eq(other)
    }
}

impl PartialEq for G1 {
    fn eq(&self, other: &G1) -> bool {
        self.0.eq(&other.0)
    }
}

impl PartialEq<[u8; G1::COMPRESSED_BYTES]> for G1 {
    fn eq(&self, other: &[u8; G1::COMPRESSED_BYTES]) -> bool {
        self.to_bytes().ct_eq(other).unwrap_u8() == 1
    }
}

impl PartialEq<[u8; G1::UNCOMPRESSED_BYTES]> for G1 {
    fn eq(&self, other: &[u8; G1::UNCOMPRESSED_BYTES]) -> bool {
        self.to_bytes_uncompressed().ct_eq(other).unwrap_u8() == 1
    }
}

impl PartialEq<GenericArray<u8, U48>> for G1 {
    fn eq(&self, other: &GenericArray<u8, U48>) -> bool {
        self.eq(array_ref![other, 0, G1::COMPRESSED_BYTES])
    }
}

impl PartialEq<Vec<u8>> for G1 {
    fn eq(&self, other: &Vec<u8>) -> bool {
        self.eq(other.as_slice())
    }
}

impl PartialEq<[u8]> for G1 {
    fn eq(&self, other: &[u8]) -> bool {
        match other.len() {
            G1::COMPRESSED_BYTES => self.eq(array_ref![other, 0, G1::COMPRESSED_BYTES]),
            G1::UNCOMPRESSED_BYTES => self.eq(array_ref![other, 0, G1::UNCOMPRESSED_BYTES]),
            _ => false,
        }
    }
}

impl From<ECP> for G1 {
    fn from(p: ECP) -> Self {
        Self(p)
    }
}

impl From<[u8; G1::COMPRESSED_BYTES]> for G1 {
    fn from(x: [u8; G1::COMPRESSED_BYTES]) -> Self {
        Self::from(&x)
    }
}

impl From<&[u8; G1::COMPRESSED_BYTES]> for G1 {
    fn from(x: &[u8; G1::COMPRESSED_BYTES]) -> Self {
        let parity = ((x[0] >> 7) & 1) as isize;
        let mut temp = x.clone();
        temp[0] = x[0] & 0x7F;
        let x = BIG::frombytes(&temp[..]);
        Self(ECP::new_bigint(&x, parity))
    }
}

impl From<[u8; G1::UNCOMPRESSED_BYTES]> for G1 {
    fn from(points: [u8; G1::UNCOMPRESSED_BYTES]) -> Self {
        Self::from(&points)
    }
}

impl From<&[u8; G1::UNCOMPRESSED_BYTES]> for G1 {
    fn from(points: &[u8; G1::UNCOMPRESSED_BYTES]) -> Self {
        let x = BIG::frombytes(&points[..Self::COMPRESSED_BYTES]);
        let y = BIG::frombytes(&points[Self::COMPRESSED_BYTES..]);
        Self(ECP::new_bigs(&x, &y))
    }
}

/// Deserialize the point from a compressed x-coordinate in big endian form
impl From<GenericArray<u8, U48>> for G1 {
    fn from(bytes: GenericArray<u8, U48>) -> Self {
        let t: &[u8; Self::COMPRESSED_BYTES] = array_ref![bytes, 0, G1::COMPRESSED_BYTES];
        Self::from(t)
    }
}

/// Deserialize the point from x and y coordinates in big endian form
impl From<GenericArray<u8, U96>> for G1 {
    fn from(bytes: GenericArray<u8, U96>) -> Self {
        let t: &[u8; Self::UNCOMPRESSED_BYTES] = array_ref![bytes, 0, G1::UNCOMPRESSED_BYTES];
        Self::from(t)
    }
}

/// Deserialize from a hex string. If the hex string is `COMPRESSED_HEX_LENGTH`
/// It will assume compressed form––x-coordinate only.
///
/// If the hex string is `UNCOMPRESSED_HEX_LENGTH`, it assumes uncompressed form––
/// x and y coordinates
impl FromStr for G1 {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        // This is best effort constant time execution.
        // Constant time is important as hex is used during serialization and deserialization.
        // A seemingly effortless solution is to filter string for errors and pad with 0s before
        // passing to AMCL but that would be expensive as the string is scanned twice
        let mut val = s.to_lowercase();
        // Given hex cannot be bigger than max byte size
        if val.len() > Self::UNCOMPRESSED_HEX_LENGTH {
            return Err(format!(
                "Expected length '{}', found '{}'",
                val.len(),
                Self::UNCOMPRESSED_HEX_LENGTH
            ));
        }

        // Pad the string for constant time parsing.
        if Self::COMPRESSED_HEX_LENGTH < val.len() && val.len() < Self::UNCOMPRESSED_HEX_LENGTH {
            while val.len() < Self::UNCOMPRESSED_HEX_LENGTH {
                val.insert(0, '0');
            }
        } else {
            while val.len() < Self::COMPRESSED_HEX_LENGTH {
                val.insert(0, '0');
            }
        }

        let mut bytes = match subtle_encoding::hex::decode(val) {
            Ok(b) => b,
            Err(e) => return Err(format!("{}", e)),
        };

        if bytes.len() > Self::COMPRESSED_BYTES {
            let x = BIG::frombytes(&bytes[..Self::COMPRESSED_BYTES]);
            let y = BIG::frombytes(&bytes[Self::COMPRESSED_BYTES..]);

            Ok(Self(ECP::new_bigs(&x, &y)))
        } else {
            let parity = ((bytes[0] >> 7) & 1) as isize;
            bytes[0] = bytes[0] & 0x7F;
            let x = BIG::frombytes(bytes.as_slice());
            Ok(Self(ECP::new_bigint(&x, parity)))
        }
    }
}

impl Display for G1 {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        self.format(f)
    }
}

impl Debug for G1 {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        self.format(f)
    }
}

fn encode_to_curve(u: BIG) -> ECP {
    let q = map_to_curve(u);
    clear_cofactor(q)
}

fn hash_to_curve(u0: BIG, u1: BIG) -> ECP {
    let mut q0 = map_to_curve(u0);
    let q1 = map_to_curve(u1);
    q0.add(&q1);
    clear_cofactor(q0)
}

/// See Section 7 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn clear_cofactor(p: ECP) -> ECP {
    p.mul(&H_EFF)
}

/// See Section 6.2 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn map_to_curve(u: BIG) -> ECP {
    let (x, y) = map_to_curve_simple_swu(u);
    iso_map(x, y)
}

/// See Section 6.6.2.1 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
///
/// Only works if p is congruent to 3 mod 4
fn map_to_curve_simple_swu(u: BIG) -> (BIG, BIG) {
    // let u = BIG::fromstring("0CCB6BDA9B602AB82AAE21C0291623E2F639648A6ADA1C76D8FFB664130FD18D98A2CC6160624148827A9726678E7CD4".to_string());
    // tv1 = Z * u^2
    let mut tv1 = BIG::modmul(&Z, &BIG::modsqr(&u, &MODULUS), &MODULUS);
    tv1.norm();
    // tv2 = tv1^2
    let mut tv2 = BIG::modsqr(&tv1, &MODULUS);
    tv2.norm();

    // x1 = tv1 + tv2
    let mut x1 = BIG::new_big(&tv1);
    x1.add(&tv2);
    x1.rmod(&MODULUS);
    x1.norm();

    // x1 = inv0(x1)
    x1.invmodp(&MODULUS);
    x1.norm();

    let e1 = if x1.iszilch() { 1 } else { 0 };

    // x1 = x1 + 1
    x1.inc(1);

    // x1 = CMOV(x1, c2, e1)
    x1.cmove(&C2, e1);

    // x1 = x1 * c1
    x1 = BIG::modmul(&x1, &C1, &MODULUS);
    x1.norm();

    // gx1 = x1^2
    let mut gx1 = BIG::modsqr(&x1, &MODULUS);
    // gx1 = gx1 + A
    gx1.add(&ISO_A);
    gx1.rmod(&MODULUS);
    gx1.norm();

    // gx1 = gx1 * x1
    gx1 = BIG::modmul(&gx1, &x1, &MODULUS);

    // gx1 = gx1 + B
    gx1.add(&ISO_B);
    gx1.rmod(&MODULUS);

    // x2 = tv1 * x1
    let mut x2 = BIG::modmul(&tv1, &x1, &MODULUS);
    x2.norm();

    // tv2 = tv1 * tv2
    tv2 = BIG::modmul(&tv1, &tv2, &MODULUS);

    // gx2 = gx1 * tv2
    let mut gx2 = BIG::modmul(&gx1, &tv2, &MODULUS);
    gx2.norm();

    // e2 = is_square(gx1)
    let e2 = if is_square(&gx1) { 1 } else { 0 };

    // x = CMOV(x2, x1, e2)
    let mut x = BIG::new_copy(&x2);
    x.cmove(&x1, e2);

    // y2 = CMOV(gx2, gx1, e2)
    let mut y2 = BIG::new_copy(&gx2);
    y2.cmove(&gx1, e2);

    // y = sqrt(y2)
    let y = sqrt_3mod4(&y2);

    // e3 = sgn0(u) == sgn0(y)
    let e3 = if sgn0(&u) == sgn0(&y) { 1 } else { 0 };

    // y = CMOV(-y, y, e3)
    let mut y_neg = BIG::modneg(&y, &MODULUS);
    y_neg.norm();
    y_neg.cmove(&y, e3);

    (x, y_neg)
}

/// Section F.1 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn sqrt_3mod4(x: &BIG) -> BIG {
    let mut t = BIG::new_big(x);
    t.powmod(&SQRT_C1, &MODULUS)
}

/// is_square(x) := { True,  if x^((q - 1) / 2) is 0 or 1 in F;
///                 { False, otherwise.
fn is_square(x: &BIG) -> bool {
    let mut t = BIG::new_copy(x);
    t = t.powmod(&PM1DIV2, &MODULUS);
    let mut sum = 0;
    for i in 1..t.w.len() {
        sum |= t.w[i];
    }
    sum == 0 && (t.w[0] == 0 || t.w[0] == 1)
}

/// See Section 4.1 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn sgn0(x: &BIG) -> Ordering {
    if *x > PM1DIV2 {
        Ordering::Less
    } else {
        Ordering::Greater
    }
}

/// See Section 4.3 in
/// <https://eprint.iacr.org/2019/403.pdf>
fn iso_map(x_prime: BIG, y_prime: BIG) -> ECP {
    let mut x_values: [BIG; 16] = [BIG::new(); 16];
    x_values[0] = BIG::new_int(1);
    x_values[1] = x_prime;
    x_values[2] = BIG::modsqr(&x_prime, &MODULUS);
    x_values[3] = BIG::modmul(&x_values[2], &x_prime, &MODULUS);
    x_values[4] = BIG::modmul(&x_values[3], &x_prime, &MODULUS);
    x_values[5] = BIG::modmul(&x_values[4], &x_prime, &MODULUS);
    x_values[6] = BIG::modmul(&x_values[5], &x_prime, &MODULUS);
    x_values[7] = BIG::modmul(&x_values[6], &x_prime, &MODULUS);
    x_values[8] = BIG::modmul(&x_values[7], &x_prime, &MODULUS);
    x_values[9] = BIG::modmul(&x_values[8], &x_prime, &MODULUS);
    x_values[10] = BIG::modmul(&x_values[9], &x_prime, &MODULUS);
    x_values[11] = BIG::modmul(&x_values[10], &x_prime, &MODULUS);
    x_values[12] = BIG::modmul(&x_values[11], &x_prime, &MODULUS);
    x_values[13] = BIG::modmul(&x_values[12], &x_prime, &MODULUS);
    x_values[14] = BIG::modmul(&x_values[13], &x_prime, &MODULUS);
    x_values[15] = BIG::modmul(&x_values[14], &x_prime, &MODULUS);

    let mut x = iso_map_helper(&x_values, &X_NUM);
    let mut x_den = iso_map_helper(&x_values, &X_DEN);
    let mut y = iso_map_helper(&x_values, &Y_NUM);
    let mut y_den = iso_map_helper(&x_values, &Y_DEN);

    x_den.invmodp(&MODULUS);
    x = BIG::modmul(&x, &x_den, &MODULUS);

    y_den.invmodp(&MODULUS);
    y = BIG::modmul(&y, &y_den, &MODULUS);
    y = BIG::modmul(&y, &y_prime, &MODULUS);

    ECP::new_bigs(&x, &y)
}

/// Compute a section of iso map
fn iso_map_helper(x: &[BIG], k: &[BIG]) -> BIG {
    let mut new_x = BIG::new();
    for i in 0..k.len() {
        let t = BIG::modmul(&x[i], &k[i], &MODULUS);
        new_x.add(&t);
        new_x.rmod(&MODULUS);
    }
    new_x
}

/// Hash to field using expand_message_xmd to compute `u` as specified in Section 5.2 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn hash_to_field_xmd_nu<D: BlockInput + Digest<OutputSize = U32>>(
    msg: &[u8],
    dst: &DomainSeparationTag,
) -> Result<BIG, HashingError> {
    // length_in_bytes = count * m * L = 1 * 1 * 64 = 64
    let random_bytes = expand_message_xmd::<D, L>(msg, dst)?;
    // elm_offset = L * (j + i * m) = 64 * (0 + 0 * 1) = 0
    // tv = substr(random_bytes, 0, 64)
    Ok(field_elem_from_larger_bytearray(random_bytes.as_slice()))
}

/// Hash to field using expand_message_xmd to compute two `u`s as specified in Section 5.2 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
///
/// We avoid the loop and get compile time checking this way
fn hash_to_field_xmd_ro<D: BlockInput + Digest<OutputSize = U32>>(
    msg: &[u8],
    dst: &DomainSeparationTag,
) -> Result<(BIG, BIG), HashingError> {
    // length_in_bytes = count * m * L = 2 * 1 * 64 = 128
    let random_bytes = expand_message_xmd::<D, TwoL>(msg, dst)?;
    // elm_offset_0 = L * (j + i * m) = 64 * (0 + 0 * 1) = 0
    // elm_offset_1 = L * (j + i * m) = 64 * (0 + 1 * 1) = 64
    // tv_0 = substr(random_bytes, 0, 64)
    // tv_1 = substr(random_bytes, 64, 64)
    let u_0 = field_elem_from_larger_bytearray(&random_bytes[0..L::to_usize()]);
    let u_1 = field_elem_from_larger_bytearray(&random_bytes[L::to_usize()..]);
    Ok((u_0, u_1))
}

/// Hash to field using expand_message_xof to compute `u` as specified in Section 5.2 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
fn hash_to_field_xof_nu<X: ExtendableOutput + Input + Reset + Default>(
    msg: &[u8],
    dst: &DomainSeparationTag,
) -> Result<BIG, HashingError> {
    // length_in_bytes = count * m * L = 1 * 1 * 64 = 64
    let random_bytes = expand_message_xof::<X, L>(msg, dst)?;
    // elm_offset = L * (j + i * m) = 64 * (0 + 0 * 1) = 0
    // tv = substr(random_bytes, 0, 64)
    Ok(field_elem_from_larger_bytearray(random_bytes.as_slice()))
}

/// Hash to field using expand_message_xof to compute two `u`s as specified in Section 5.2 in
/// <https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/?include_text=1>
///
/// We avoid the loop and get compile time checking this way
fn hash_to_field_xof_ro<X: ExtendableOutput + Input + Reset + Default>(
    msg: &[u8],
    dst: &DomainSeparationTag,
) -> Result<(BIG, BIG), HashingError> {
    // length_in_bytes = count * m * L = 2 * 1 * 64 = 128
    let random_bytes = expand_message_xof::<X, TwoL>(msg, dst)?;
    // elm_offset_0 = L * (j + i * m) = 64 * (0 + 0 * 1) = 0
    // elm_offset_1 = L * (j + i * m) = 64 * (0 + 1 * 1) = 64
    // tv_0 = substr(random_bytes, 0, 64)
    // tv_1 = substr(random_bytes, 64, 64)
    let u_0 = field_elem_from_larger_bytearray(&random_bytes[0..L::to_usize()]);
    let u_1 = field_elem_from_larger_bytearray(&random_bytes[L::to_usize()..]);
    Ok((u_0, u_1))
}

/// FIELD_ELEMENT_SIZE <= random_bytes.len() <= FIELD_ELEMENT_SIZE * 2
fn field_elem_from_larger_bytearray(random_bytes: &[u8]) -> BIG {
    // e_j = OS2IP(tv) mod p
    let mut d = DBIG::new();
    for i in random_bytes {
        d.shl(8);
        d.w[0] += *i as Chunk;
    }
    // u = (e_0, ..., e_( m - 1 ) )
    d.dmod(&MODULUS)
}

#[cfg(test)]
mod tests {
    use crate::bls381g1::{hash_to_field_xmd_nu, hash_to_field_xmd_ro, map_to_curve};
    use crate::DomainSeparationTag;
    use amcl::bls381::{big::BIG, ecp::ECP};

    #[test]
    fn map_to_curve_ro_tests() {
        let dst = DomainSeparationTag::new(
            b"BLS12381G1_XMD:SHA-256_SSWU_RO_",
            Some(b"TESTGEN"),
            None,
            None,
        )
        .unwrap();
        let msgs = [
            "",
            // "abc",
            // "abcdef0123456789",
            // "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
        ];

        let expected_q = [
            ("02f2686965a4dd27ccb11119f2e131aefee818744a414d23ecef4db1407991fdf058f0affaee18fd586a9ab81060ae20",
             "0341a16c88a39b3d111b36b7cf885b7147b1d54b9201faaba5b47d7839bcf433cc35bb1f7b8e55aa9382a52fe4d84370",
             "1357bddd2bc6c8e752f3cf498ffe29ae87d8ff933701ae76f82d2839b0d9aee5229d4fff54dfb8223be0d88fa4485863",
             "09ba0ec3c78cf1e65330721f777b529aef27539642c39be11f459106b890ec5eb4a21c5d94885603e822cfa765170857"),

            ("119cc1d21e3e494d388a8718fe9f8ec6d8ff134486ce5c1f97129797616c4b8125f0dc568c59836cbf064496136438bc",
             "19e6c998825ee57b82c4808e4df477680f0f254c9edce228104422494a4e5d40d11ee676f6b861b6c49cf7de9d777aef",
             "0d1783f40bd83461b921c3fcd0e9ba326ef75272b122cf44338f0060d7179995a38ea9c66f3ce800e2f693d2634a4524",
             "017b2566d55fa7ee43844f1fa068cb0a11d5889c11607d939da046697c8ba25cf71054c2a8eb2189d3680485a39f5bdd"),

            ("1614d05720a39379fb89469883f90ae3e50995def9e17f8f8566a3f6cfb4fe88267eac1dc7834406fc597965065ef100",
             "1060e5aab331ac4940693a936ea80029bb2c4a3945add7ae35bce805e767af827c4a9ffcb5842fbc50ab234716d895f6",
             "0f612cda21cee750b1ccff361a4ce047e70d9a9e152e96a60aa29b5d8a5dcd25f7c5bd71bb56bd34e6a8af7532afaa4f",
             "1878f926302468949ef290b4fee621d1172e072eda1b42e366df68fc87f53c35583dbc043009e0b38a04a9b1ff617efe"),

            ("0a817078e7f30f08e94a25c2a1947160db1fe52042626660b8252cd339e678a1fecc0e6da60390a203532bd089a426b6",
             "097bd5d6ae3f5b5d0ba5e4099485caa2c505a1d900e4525af10254b3927ae0c82611be944ff8fdc6b278aab9e17ee27c",
             "1098f203da72c58dca61ffd52a3de82603d3154c527df51c2efe6298ea0eeaa065d57ba3a809b5e32d9d56dade119006",
             "0bcbd9df3505f049476f060c1d1c958fe8b34e426fd7e75424c9e227d9c4d3edbd5eddb8b1e89cc91b4a7bd3275d4d70"),
        ];

        for i in 0..msgs.len() {
            let u = hash_to_field_xmd_ro::<sha2::Sha256>(msgs[i].as_bytes(), &dst).unwrap();
            let exp_q = ECP::new_bigs(
                &BIG::from_hex(expected_q[i].0.to_string()),
                &BIG::from_hex(expected_q[i].1.to_string()),
            );
            let actual_q = map_to_curve(u.0);
            assert_eq!(exp_q, actual_q);
            let exp_q = ECP::new_bigs(
                &BIG::from_hex(expected_q[i].2.to_string()),
                &BIG::from_hex(expected_q[i].3.to_string()),
            );
            let actual_q = map_to_curve(u.1);
            assert_eq!(exp_q, actual_q);
        }
    }

    // Take from section G.9.2
    #[test]
    fn map_to_curve_nu_tests() {
        let dst = DomainSeparationTag::new(
            b"BLS12381G1_XMD:SHA-256_SSWU_NU_",
            Some(b"TESTGEN"),
            None,
            None,
        )
        .unwrap();
        let msgs = [
            "",
            "abc",
            "abcdef0123456789",
            "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
        ];
        let q_s = [
            ("0dddf77f320e7848a457358ab8d3b84cbaf19307be26b91a10c211651691cd736b1f59d77aed3954f857f108d6966f5b", "0450ab32020649f22a2fca166a1d8a59d4c93f1eb078a4bedd6c48027b9933507a2a8ae4d915305f58ede781283325a9"),
            ("12897a9a513b12303a7f0f3a3cc7c838d16847a31507980945312bede915848159bd390b16b8e378b398e31a385d9180", "1372530cc0811d70071e50640281aa8aaf96ee09c01281ccfead92296cb9dacf5054aa51dbea730e46239e709042a15d"),
            ("08459bd42a955d6e247fce6c81eda0ad9645f9e666d141a71f0afa3fbc509b2c58550fe077d073cc752493400399fddd", "169d35a8c6bb915ae910f4c6cde359622746b0c8b2b241b411d0e92ef991d3e6a7b0fafabb93c1de2e3997d6e362ce8a"),
            ("08c937d529c01ab2398b85b0bff6da465ed6265d4944dbbef7d383eea40157927082739c7b5417027d2225c6cb9d5ef0", "059047d83b5ea1ff7f0665b406acede27f233d3414055cbff25b37614b679f08fd6d807b5956edec6abad36c5321d99e"),
        ];

        for i in 0..msgs.len() {
            let u = hash_to_field_xmd_nu::<sha2::Sha256>(msgs[i].as_bytes(), &dst).unwrap();
            let expected_q = ECP::new_bigs(
                &BIG::from_hex(q_s[i].0.to_string()),
                &BIG::from_hex(q_s[i].1.to_string()),
            );
            let actual_q1 = map_to_curve(u);
            assert_eq!(expected_q, actual_q1);
        }
    }

    // Take from section G.9.2
    #[test]
    fn hash_to_field_xmd_nu_tests() {
        let dst = DomainSeparationTag::new(
            b"BLS12381G1_XMD:SHA-256_SSWU_NU_",
            Some(b"TESTGEN"),
            None,
            None,
        )
        .unwrap();
        let msgs = [
            "",
            "abc",
            "abcdef0123456789",
            "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
        ];
        let executed_u_s = [
            "0ccb6bda9b602ab82aae21c0291623e2f639648a6ada1c76d8ffb664130fd18d98a2cc6160624148827a9726678e7cd4",
            "08accd9a1bd4b75bb2e9f014ac354a198cbf607f0061d00a6286f5544cf4f9ecc1439e3194f570cbbc7b96d1a754f231",
            "0a359cf072db3a39acf22f086d825fcf49d0daf241d98902342380fc5130b44e55de8f684f300bc11c44dee526413363",
            "181d09392c52f7740d5eaae52123c1dfa4808343261d8bdbaf19e7773e5cdfd989165cd9ecc795500e5da2437dde2093",
        ];

        for i in 0..msgs.len() {
            let expected_u = BIG::from_hex(executed_u_s[i].to_string());
            let actual_u = hash_to_field_xmd_nu::<sha2::Sha256>(msgs[i].as_bytes(), &dst);
            assert!(actual_u.is_ok());
            assert_eq!(actual_u.unwrap(), expected_u);
        }
    }

    // Take from section G.9.1
    #[test]
    fn hash_to_field_xmd_ro_tests() {
        let dst = DomainSeparationTag::new(
            b"BLS12381G1_XMD:SHA-256_SSWU_RO_",
            Some(b"TESTGEN"),
            None,
            None,
        )
        .unwrap();
        let msgs = [
            "",
            "abc",
            "abcdef0123456789",
            "a512_aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
        ];
        let expected_u_s = [
            ("14700e34d15178550475044b044b4e41ca8d52a655c34f8afea856d21d499f48c9370d2bae4ae8351305493e48d36ab5", "17e2da57f6fd3f11dba6119db4cd26b03e63e67b4e42db678d9c41fdfcaff00ba336d8563abcd9da6c17d2e1784ee858"),
            ("10c84aa245c74ee20579a27e63199be5d19cdfb5e44c6b587765931605d7790a1df6e1433f78bcddb4edb8553374f75e", "0f73433dcc2b5f9905c49d905bd62e1a1529b057c77194e56d196860d9d645167e0430aec9d3c70de31dd046fcab4a20"),
            ("11503eb4a558d0d2c5fc7cdddb51ba715c33577cf1a7f2f21a7eee6d2a570332bbbe53ae3392c9f8d8f6c172ae484692", "0efd59b8d98be7c491dfdb9d2a669e32e9bb348f8a64dbf7e47708dd5d40f484b1439109a3f96230bf63af72b908c43d"),
            ("134dc7f817cc08c5a3128892385ff6e9dd55f5e39d9a2d74ac74058d5dfc025d507806ab5d9254bd2334defbb477400d", "0eeaf2c6f4c1ca5cc039d99cb94234f67e65968f36d9dd77e95da55dadd085b50fbb11489167ded9157e5aac0d99d5be"),
        ];

        for i in 0..msgs.len() {
            let expected_u0 = BIG::from_hex(expected_u_s[i].0.to_string());
            let expected_u1 = BIG::from_hex(expected_u_s[i].1.to_string());
            let res = hash_to_field_xmd_ro::<sha2::Sha256>(msgs[i].as_bytes(), &dst);
            assert!(res.is_ok());
            let (actual_u0, actual_u1) = res.unwrap();
            assert_eq!(actual_u0, expected_u0);
            assert_eq!(actual_u1, expected_u1);
        }
    }
}