1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
#![no_std]
#![allow(clippy::let_and_return)]
#![deny(unsafe_code, missing_docs)]
//! # `handy`
//!
//! `handy` provides handles and handle maps. A handle map is a fairly useful
//! data structure for rust code, since it can help you work around borrow
//! checker issues.
//!
//! Essentially, [`Handle`] and [`HandleMap`] are a more robust version of the
//! pattern where instead of storing a reference to a &T directly, you instead
//! store a `usize` which indicates where it is in some `Vec`. I claim they're
//! more robust because:
//!
//! - They can detect if you try to use a handle in a map other than the one
//!   that provided it.
//!
//! - If you remove an item from the HandleMap, the handle map won't let you use
//!   the stale handle to get whatever value happens to be in that index at the
//!   time.
//!
//! ## Usage Example
//!
//! ```
//! # use handy::HandleMap;
//! let mut m = HandleMap::new();
//! let h0 = m.insert(3u32);
//! assert_eq!(m[h0], 3);
//! m.remove(h0);
//! assert_eq!(m.get(h0), None);
//! ```
//!
//! # Similar crates
//!
//! A whole bunch.
//!
//! - `slotmap`: Same idea as this, but it requires `T: Copy` (there's a way
//!   around this but it's a pain IMO). Has a system for defining handles for
//!   use in specific maps, but can't detect if you use a key from one map in
//!   another, if the maps are the same type. It also has a bunch of other maps
//!   for different performance cases but honestly the limitation of `T: Copy`
//!   has prevented me from digging too deeply.
//!
//! - `slab`: Also the same idea but you might not realize it from the docs. It
//!   can't detect use with the wrong map or use after the item is removed and
//!   another occupies the same spot.
//!
//! - `ffi_support`'s `HandleMap`: I wrote this one. It's very similar, but with
//!   some different tradeoffs, and essentially different code. Also, this
//!   library doesn't bring in as many heavyweight dependencies, has more
//!   features, and isn't focused on use inside the FFI.
//!
//! - Unlike any of them, we're usable in no_std situations (we do link with
//!   `extern crate alloc`, of course).

extern crate alloc;
use alloc::vec::Vec;
use core::sync::atomic::{AtomicU16, Ordering};
mod halloc;

pub mod typed;

pub use halloc::HandleAlloc;

/// `HandleMap`s are a collection data structure that allow you to reference
/// their members by using a opaque handle.
///
/// In rust code, you often use these handles as a sort of lifetime-less
/// reference. `Handle` is a paper-thin wrapper around a `u64`, so it is `Copy +
/// Send + Sync + Eq + Ord + ...` even if `T` (or even `&T`) wouldn't be,
/// however you need access to the map in order to read the value.
///
/// This is probably starting to sound like `HandleMap` is just a `Vec`, and
/// `Handle` is just `usize`, but unlike `usize`:
///
/// - a `HandleMap` can tell if you try to use a `Handle` from a different map
///   to access one of it's values.
///
/// - a `HandleMap` tracks insertion/removal of the value at each index, will
///   know if you try to use a handle to get a value that was removed, even if
///   another value occupies the same index.
///
/// # Example
/// ```
/// # use handy::HandleMap;
/// let mut m = HandleMap::new();
/// let h0 = m.insert(3usize);
/// assert_eq!(m[h0], 3);
/// m[h0] += 2;
/// assert_eq!(m[h0], 5);
/// let v = m.remove(h0);
/// assert_eq!(v, Some(5));
/// assert_eq!(m.get(h0), None);
/// ```
#[derive(Clone)]
pub struct HandleMap<T> {
    entries: Vec<Entry<T>>,
    len: usize,
    next: Option<u32>,
    end_of_list: Option<u32>,
    id: u16,
}

impl<T> Default for HandleMap<T> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

static SOURCE_ID: AtomicU16 = AtomicU16::new(1);

impl<T> HandleMap<T> {
    /// Create a new handle map.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let m: HandleMap<u32> = HandleMap::new();
    /// // No allocation is performed by default.
    /// assert_eq!(m.capacity(), 0);
    /// ```
    #[inline]
    pub fn new() -> Self {
        Self::new_with_map_id(SOURCE_ID.fetch_add(1, Ordering::Relaxed))
    }

    #[inline]
    pub(crate) fn new_with_map_id(id: u16) -> Self {
        Self {
            entries: Vec::new(),
            len: 0,
            next: None,
            end_of_list: None,
            id,
        }
    }

    /// Create a new handle map with at least the specified capacity.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let m: HandleMap<u32> = HandleMap::with_capacity(10);
    /// // Note that we don't guarantee the capacity will be exact.
    /// // (though in practice it will so long as the requested
    /// // capacity is >= 8)
    /// assert!(m.capacity() >= 10);
    /// ```
    pub fn with_capacity(c: usize) -> Self {
        let mut a = Self::new();
        if c == 0 {
            return a;
        }
        assert!(c < i32::max_value() as usize);
        a.reserve(c);
        a
    }

    /// Get the number of entries we can hold before reallocation.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// m.insert(10);
    /// assert!(m.capacity() >= 1);
    /// ```
    #[inline]
    pub fn capacity(&self) -> usize {
        self.entries.len()
    }

    /// Get the number of occupied entries.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// assert_eq!(m.len(), 0);
    /// m.insert(10u32);
    /// assert_eq!(m.len(), 1);
    /// ```
    #[inline]
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns true if our length is zero
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// assert!(m.is_empty());
    /// ```
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Get the id of this map, which is used to validate handles.
    ///
    /// This is typically not needed except for debugging and advanced usage.
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.map_id(), h.map_id());
    /// ```
    #[inline]
    pub fn map_id(&self) -> u16 {
        self.id
    }

    /// Set the id of this map, which is used to validate handles (See
    /// [`Handle`] documentation for more details).
    ///
    /// # Warning
    /// Doing so will cause the map to fail to recognize handles that it
    /// previously returned, and probably other problems! You're recommended
    /// against using it unless you know what you're doing!
    #[inline]
    pub fn raw_set_map_id(&mut self, v: u16) {
        self.id = v;
    }

    /// Add a new item, returning a handle to it.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m[h], 10);
    /// ```
    pub fn insert(&mut self, value: T) -> Handle {
        let index = self.get_next();
        let mut e = &mut self.entries[index];

        debug_assert!(e.payload.is_none());
        e.payload = Some(value);
        e.gen = e.gen.wrapping_add(1);

        if e.gen == 0 {
            // Zero generation indicates an invalid handle.
            e.gen = 2;
        }
        self.next = core::mem::replace(&mut e.next, None);
        self.len += 1;
        let res = Handle::from_raw_parts(index, e.gen, self.id);
        #[cfg(test)]
        {
            self.assert_valid();
        }
        res
    }

    /// Remove the value referenced by this handle from the map, returning it.
    ///
    /// If the handle doesn't point to an entry in the map we return None. This
    /// will happen if:
    ///
    /// - The handle comes from a different map.
    /// - The item it referenced has been removed already.
    /// - It appears corrupt in some other way (For example, it's
    ///   `Handle::default()`, or comes from a dubious `Handle::from_raw_*`)
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// // Present:
    /// assert_eq!(m.remove(h), Some(10));
    /// // Not present:
    /// assert_eq!(m.remove(h), None);
    /// ```
    pub fn remove(&mut self, handle: Handle) -> Option<T> {
        self.handle_check_mut(handle)?;
        self.raw_remove(handle.index())
    }

    /// Remove all entries in this handle map.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// m.clear();
    /// assert_eq!(m.len(), 0);
    /// assert_eq!(m.get(h), None);
    /// ```
    pub fn clear(&mut self) {
        if self.entries.is_empty() {
            return;
        }
        let update_gen = move |e: &mut Entry<T>| {
            if (e.gen & 1) == 0 {
                e.gen = e.gen.wrapping_add(1);
            } else {
                e.gen = e.gen.wrapping_add(2);
            }
            if e.gen == 0 {
                e.gen = 1;
            }
        };
        for i in 0..(self.entries.len() - 1) {
            update_gen(&mut self.entries[i]);
            self.entries[i].next = Some((i + 1) as u32);
            self.entries[i].payload = None;
        }
        let mut end = self.entries.last_mut().unwrap();
        update_gen(&mut end);
        end.next = None;
        end.payload = None;
        self.next = Some(0);
        self.end_of_list = Some((self.entries.len() - 1) as u32);
        self.len = 0;
        #[cfg(test)]
        {
            self.assert_valid();
        }
    }

    /// Try and get a reference to the item backed by the handle.
    ///
    /// If the handle doesn't point to an entry in the map we return None. This
    /// will happen if:
    ///
    /// - The handle comes from a different map.
    /// - The item it referenced has been removed already.
    /// - It appears corrupt in some other way (For example, it's
    ///   `Handle::default()`, or comes from a dubious `Handle::from_raw_*`)
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.get(h), Some(&10));
    /// m.remove(h);
    /// assert_eq!(m.get(h), None);
    /// ```
    #[inline]
    pub fn get(&self, handle: Handle) -> Option<&T> {
        self.handle_check(handle).and_then(|e| e.payload.as_ref())
    }

    /// Try and get mutable a reference to the item backed by the handle.
    ///
    /// If the handle doesn't point to an entry in the map we return None. This
    /// will happen if:
    ///
    /// - The handle comes from a different map.
    /// - The item it referenced has been removed already.
    /// - It appears corrupt in some other way (For example, it's
    ///   `Handle::default()`, or comes from a dubious `Handle::from_raw_*`)
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// *m.get_mut(h).unwrap() += 1;
    /// assert_eq!(m[h], 11);
    /// // Note: The following is equivalent if you're going to `unwrap` the result of get_mut:
    /// m[h] += 1;
    /// assert_eq!(m[h], 12);
    /// ```
    #[inline]
    pub fn get_mut(&mut self, handle: Handle) -> Option<&mut T> {
        self.handle_check_mut(handle)
            .and_then(|e| e.payload.as_mut())
    }

    /// Returns true if the handle refers to an item present in this map.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert!(m.contains(h));
    /// m.remove(h);
    /// assert!(!m.contains(h));
    /// ```
    #[inline]
    pub fn contains(&self, h: Handle) -> bool {
        self.get(h).is_some()
    }

    /// Returns true if the handle refers to an item present in this map.
    ///
    /// This is equivalent to [`HandleMap::contains`] but provided for some
    /// compatibility with other Map apis.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert!(m.contains_key(h));
    /// m.remove(h);
    /// assert!(!m.contains_key(h));
    /// ```
    #[inline]
    pub fn contains_key(&self, h: Handle) -> bool {
        self.get(h).is_some()
    }

    /// Search the map for `item`, and if it's found, return a handle to it.
    ///
    /// If more than one value compare as equal to `item`, it's not specified
    /// which we will return.
    ///
    /// Note that this is a naive O(n) search, so if you want this often, you
    /// might want to store the handle as a field on the value.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.find_handle(&10), Some(h));
    /// assert_eq!(m.find_handle(&11), None);
    /// ```
    #[inline]
    pub fn find_handle(&self, item: &T) -> Option<Handle>
    where
        T: PartialEq,
    {
        for (i, e) in self.entries.iter().enumerate() {
            if e.payload.as_ref() == Some(item) {
                return Some(Handle::from_raw_parts(i, e.gen, self.id));
            }
        }
        None
    }

    /// Reserve space for `sz` additional items.
    ///
    /// ## Example
    ///
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// assert_eq!(m.capacity(), 0);
    /// m.reserve(10);
    /// assert!(m.capacity() >= 10);
    /// ```
    pub fn reserve(&mut self, sz: usize) {
        self.grow(self.len() + sz);
    }

    /// Get an iterator over every occupied slot of this map.
    ///
    /// See also `iter_with_handles` if you want the handles during
    /// iteration.
    ///
    /// ## Example
    ///
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// m.insert(10u32);
    /// assert_eq!(*m.iter().next().unwrap(), 10);
    /// ```
    #[inline]
    pub fn iter<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
        self.entries.iter().filter_map(|e| e.payload.as_ref())
    }

    /// Get a mut iterator over every occupied slot of this map.
    ///
    /// See also `iter_mut_with_handles` if you want the handles during
    /// iteration.
    ///
    /// ## Example
    ///
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// for v in m.iter_mut() {
    ///     *v += 1;
    /// }
    /// assert_eq!(m[h], 11);
    /// ```
    #[inline]
    pub fn iter_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
        self.entries.iter_mut().filter_map(|e| e.payload.as_mut())
    }

    /// Get an iterator over every occupied slot of this map, as well as a
    /// handle which can be used to fetch them later.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// # let m: HandleMap<u32> = HandleMap::new();
    /// for (h, v) in m.iter_with_handles() {
    ///     println!("{:?} => {}", h, v);
    /// }
    /// ```
    #[inline]
    pub fn iter_with_handles<'a>(&'a self) -> impl Iterator<Item = (Handle, &'a T)> + 'a {
        self.entries.iter().enumerate().filter_map(move |(i, e)| {
            e.payload
                .as_ref()
                .map(|p| (Handle::from_raw_parts(i, e.gen, self.id), p))
        })
    }

    /// Get a mut iterator over every occupied slot of this map, as well as a
    /// handle which can be used to fetch them later.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// # let mut m = HandleMap::<u32>::new();
    /// for (h, v) in m.iter_mut_with_handles() {
    ///     *v += 1;
    ///     println!("{:?}", h);
    /// }
    /// ```
    #[inline]
    pub fn iter_mut_with_handles<'a>(
        &'a mut self,
    ) -> impl Iterator<Item = (Handle, &'a mut T)> + 'a {
        let id = self.id;
        self.entries
            .iter_mut()
            .enumerate()
            .filter_map(move |(i, e)| {
                let gen = e.gen;
                e.payload
                    .as_mut()
                    .map(|p| (Handle::from_raw_parts(i, gen, id), p))
            })
    }

    /// If `index` refers to an occupied entry, return a `Handle` to it.
    /// Otherwise, return None. This is a low level API that shouldn't be needed
    /// for typical use.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.handle_for_index(h.index()), Some(h));
    /// ```
    #[inline]
    pub fn handle_for_index(&self, index: usize) -> Option<Handle> {
        let e = self.entries.get(index)?;
        if e.payload.is_some() {
            debug_assert!((e.gen & 1) == 0 && (e.gen != 0));
            Some(Handle::from_raw_parts(index, e.gen, self.id))
        } else {
            None
        }
    }

    /// Access the value at the provided index, whatever it happens to be.
    ///
    /// Returns none if `index` >= `capacity()` or if the index is unoccupied.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.raw_value_at_index(h.index()), Some(&10));
    /// ```
    ///
    /// # Caveat
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to call this function.
    #[inline]
    pub fn raw_value_at_index(&self, index: usize) -> Option<&T> {
        self.entries.get(index).and_then(|v| v.payload.as_ref())
    }

    /// Access the value at the provided index, whatever it happens to be.
    ///
    /// Returns none if `index` >= `capacity()` or if the index is unoccupied.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m: HandleMap<u32> = HandleMap::new();
    /// let h = m.insert(10u32);
    /// *m.raw_mut_value_at_index(h.index()).unwrap() = 11;
    /// assert_eq!(m[h], 11);
    /// ```
    /// # Caveat
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to call this function.
    #[inline]
    pub fn raw_mut_value_at_index(&mut self, index: usize) -> Option<&mut T> {
        self.entries.get_mut(index).and_then(|v| v.payload.as_mut())
    }

    #[inline]
    fn handle_check(&self, handle: Handle) -> Option<&Entry<T>> {
        if handle.meta() != self.id {
            unlikely_hint();
            return None;
        }
        let i = handle.index();
        if i >= self.entries.len() {
            unlikely_hint();
            return None;
        }
        let e = &self.entries[i];
        let gen = handle.generation();
        if e.gen != gen || (gen & 1) != 0 {
            unlikely_hint();
            None
        } else {
            Some(e)
        }
    }

    #[inline]
    fn handle_check_mut(&mut self, handle: Handle) -> Option<&mut Entry<T>> {
        if handle.meta() != self.id {
            unlikely_hint();
            return None;
        }
        let i = handle.index();
        if i >= self.entries.len() {
            unlikely_hint();
            return None;
        }
        let e = &mut self.entries[i];
        let gen = handle.generation();
        if e.gen != gen || (gen & 1) != 0 {
            unlikely_hint();
            None
        } else {
            Some(e)
        }
    }

    #[inline]
    fn get_next(&mut self) -> usize {
        if let Some(n) = self.next {
            n as usize
        } else {
            let n = self.grow_for_insert();
            debug_assert!(self.next == Some(n as u32));
            n
        }
    }

    #[cold]
    fn grow_for_insert(&mut self) -> usize {
        self.grow(self.capacity() + 1).expect("bug")
    }

    // note: returns `self.next` unwrapped.
    fn grow(&mut self, need: usize) -> Option<usize> {
        if need <= self.capacity() {
            return self.next.map(|u| u as usize);
        }
        let cap = (self.capacity() * 2).max(need).max(8);
        assert!(cap <= i32::max_value() as usize, "Capacity overflow");

        self.entries.reserve(cap - self.entries.len());

        let current_cap = self.capacity();
        self.entries.extend((current_cap..(cap - 1)).map(|i| Entry {
            next: Some((i + 1) as u32),
            payload: None,
            gen: 1,
        }));

        self.entries.push(Entry {
            next: None,
            payload: None,
            gen: 1,
        });
        if self.next.is_none() {
            self.next = Some(current_cap as u32);
            self.end_of_list = Some((self.entries.len() - 1) as u32);
        } else {
            let end = self.end_of_list.unwrap();
            let ee = &mut self.entries[end as usize];
            debug_assert!(ee.payload.is_none());
            ee.next = Some(current_cap as u32);
            self.end_of_list = Some((self.entries.len() - 1) as u32);
        }
        #[cfg(test)]
        {
            self.assert_valid();
        }
        Some(current_cap as usize)
    }

    #[cfg(test)]
    #[allow(clippy::cognitive_complexity)]
    fn assert_valid(&self) {
        if self.entries.is_empty() {
            return;
        }

        assert!(self.len() <= self.capacity());
        assert!(
            self.capacity() <= i32::max_value() as usize,
            "Entries too large"
        );

        if self.len() == self.capacity() {
            assert!(self.next.is_none());
        } else {
            assert!(self.next.is_some());
        }

        let number_of_ends = self
            .entries
            .iter()
            .filter(|e| e.next.is_none() && e.payload.is_none())
            .count();
        if self.capacity() != 0 {
            let end = self.end_of_list.expect("Should have end") as usize;
            assert_eq!(self.entries[end].next, None);
            if self.capacity() == self.len() {
                assert!(self.entries[end].payload.is_some());
                assert_eq!(number_of_ends, 0);
            } else {
                assert!(self.entries[end].payload.is_none());
                assert_eq!(number_of_ends, 1);
            }
        } else {
            assert_eq!(number_of_ends, 0);
        }
        if self.next.is_none() {
            assert!(self.entries[self.end_of_list.unwrap() as usize]
                .payload
                .is_some());
        }
        // Check that the free list hits every unoccupied item.
        // The tuple is: `(should_be_in_free_list, is_in_free_list)`.
        let mut free_indices = alloc::vec![(false, false); self.capacity()];
        for (i, e) in self.entries.iter().enumerate() {
            if e.payload.is_none() {
                free_indices[i].0 = true;
            } else {
                assert!(e.next.is_none(), "occupied slot in free list");
            }
        }

        let mut next = self.next;
        while let Some(ni) = next {
            let ni = ni as usize;

            assert!(
                ni <= free_indices.len(),
                "Free list contains out of bounds index!"
            );

            assert!(
                free_indices[ni].0,
                "Free list has an index that shouldn't be free! {}",
                ni
            );

            assert!(
                !free_indices[ni].1,
                "Free list hit an index ({}) more than once! Cycle detected!",
                ni
            );

            free_indices[ni].1 = true;

            assert!(self.entries[ni].payload.is_none());
            next = self.entries[ni].next;
            if next.is_none() {
                assert_eq!(Some(ni as u32), self.end_of_list);
            }
        }

        let mut occupied_count = 0;
        for (i, &(should_be_free, is_free)) in free_indices.iter().enumerate() {
            assert_eq!(
                should_be_free, is_free,
                "Free list missed item, or contains an item it shouldn't: {}",
                i
            );
            if !should_be_free {
                occupied_count += 1;
            }
        }
        assert_eq!(
            self.len, occupied_count,
            "len doesn't reflect the actual number of entries"
        );
    }

    /// Directly query the value of the generation at that index.
    ///
    /// If `index` is greater then `self.capacity()`, then this returns None.
    ///
    /// Advanced usage note: Even generations always indicate an occupied index,
    /// except for 0, which is never a valid generation.
    ///
    /// ## Example
    /// ```
    /// # use handy::HandleMap;
    /// let mut m = HandleMap::new();
    /// let h = m.insert(10u32);
    /// assert_eq!(m.raw_generation_for_index(h.index()), Some(h.generation()));
    /// ```
    ///
    /// # Caveat
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to call this function, however doing so is harmless.
    #[inline]
    pub fn raw_generation_for_index(&self, index: usize) -> Option<u16> {
        self.entries.get(index).map(|e| e.gen)
    }

    pub(crate) fn raw_remove(&mut self, index: usize) -> Option<T> {
        let mut e = &mut self.entries[index];
        e.gen = e.gen.wrapping_add(1);
        if e.gen == 0 {
            e.gen = 1;
        }
        e.next = self.next;
        self.next = Some(index as u32);
        self.len -= 1;
        let r = e.payload.take();
        debug_assert!(r.is_some());
        #[cfg(test)]
        {
            self.assert_valid();
        }
        r
    }
}

impl<T> core::ops::Index<Handle> for HandleMap<T> {
    type Output = T;
    fn index(&self, h: Handle) -> &T {
        self.get(h).expect("Invalid handle used in index")
    }
}

impl<T> core::ops::IndexMut<Handle> for HandleMap<T> {
    fn index_mut(&mut self, h: Handle) -> &mut T {
        self.get_mut(h).expect("Invalid handle used in index_mut")
    }
}

/// An iterator that moves out of a HandleMap.
#[derive(Debug)]
pub struct IntoIter<T> {
    inner: alloc::vec::IntoIter<Entry<T>>,
}

impl<T> IntoIterator for HandleMap<T> {
    type IntoIter = IntoIter<T>;
    type Item = T;
    fn into_iter(self) -> Self::IntoIter {
        IntoIter {
            inner: self.entries.into_iter(),
        }
    }
}

impl<T> Iterator for IntoIter<T> {
    type Item = T;
    #[inline]
    fn next(&mut self) -> Option<T> {
        self.inner
            .try_for_each(|e| {
                if let Some(p) = e.payload {
                    Err(p)
                } else {
                    Ok(())
                }
            })
            .err()
    }
    // TODO: Size hint.
}

#[cold]
fn unlikely_hint() {}

#[derive(Debug, Clone)]
struct Entry<T> {
    next: Option<u32>,
    gen: u16,
    payload: Option<T>,
}

/// An untyped reference to some value. Handles are just a fancy u64.
///
/// Internally these store:
///
/// - A 32-bit index field.
/// - The 16-bit 'generation' of that index (this is incremented both when an
///   item is removed from the index, and when another is inserted).
/// - An extra value typically used to store the ID of their map.
///
/// They're a #[repr(transparent)] wrapper around a u64, so if they need to be
/// passed into C code over the FFI, that can be done directly.
///
/// # Advanced Details
///
/// Typical use of this library expects that you just treat these as opaque,
/// however you're free to inspect and construct them as you please (with
/// `from_raw` and `from_raw_parts`), with the caveat that using the API to do
/// so could cause the map to return non-sensical answers.
///
/// That said, should you want to do so, you absolutely can.
///
/// Some important notes if you're going to construct these:
///
/// - Valid indices should always be between 0 and i32::max_value.
///
/// - Generations for occupied indexs have a even value, and for empty indexs
///   have an odd value. The zero generation is always skipped, and is never
///   considered valid.
///
/// - If used with a HandleMap, the `meta` value must match the map they came
///   from.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct Handle(u64);

impl Handle {
    /// A constant for the default (null) handle. Never valid or returned by any
    /// map.
    pub const EMPTY: Handle = Handle::from_raw(0);

    /// Returns the index value of this handle.
    ///
    /// While a usize is returned, this value is guaranteed to be 32 bits.
    ///
    /// # Caveat
    ///
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to access this value, however doing so is harmless.
    #[inline]
    pub const fn index(self) -> usize {
        (self.0 as u32) as usize
    }

    /// Returns the generation value of this handle.
    ///
    /// # Caveat
    ///
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to access this value, however doing so is harmless.
    #[inline]
    pub const fn generation(self) -> u16 {
        (self.0 >> 48) as u16
    }

    /// Returns the metadata field of this handle. This is an alias for
    /// `map_id`, as in the common case, this is what the metadata field is used
    /// for.
    ///
    /// See [`Handle::meta`] for more info.
    #[inline]
    pub const fn map_id(self) -> u16 {
        (self.0 >> 32) as u16
    }

    /// Returns the metadata field of this handle.
    ///
    /// If used with a [`HandleMap`] (instead of directly coming from a
    /// [`HandleAlloc`]), this is the `id` of the `HandleMap` which constructed
    /// this handle. If used with a HandleAlloc, then the value has no meaning
    /// aside from whatever you assign to it -- it's 16 free bits you can use
    /// for whatever tagging you want.
    ///
    /// # Caveat
    ///
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to access this value, however doing so is harmless.
    #[inline]
    pub const fn meta(self) -> u16 {
        (self.0 >> 32) as u16
    }

    /// Construct a handle from the separate parts.
    ///
    /// # Warning
    /// This is a feature intended for advanced usage. An attempt is made to
    /// cope with dubious handles, but it's almost certainly possible to pierce
    /// the abstraction veil of the HandleMap if you use this.
    ///
    /// However, it should not be possible to cause memory unsafety -- this
    /// crate has no unsafe code.
    #[inline]
    #[allow(clippy::cast_lossless)] // const fn
    pub const fn from_raw_parts(index: usize, generation: u16, meta: u16) -> Self {
        Handle((index as u32 as u64) | ((meta as u64) << 32) | ((generation as u64) << 48))
    }

    /// Construct a handle from it's internal `u64` value.
    ///
    /// # Layout
    ///
    /// The 64 bit value is interpreted as such. It's recommended that you
    /// instead use `from_raw_parts` to construct these in cases where this is
    /// relevant, though.
    ///
    /// ```text
    /// [16 bits of generation | 16 bits of map id | 32 bit index]
    /// MSB                                                    LSB
    /// ```
    ///
    /// # Warning
    ///
    /// This is a feature intended for advanced usage. An attempt is made to
    /// cope with dubious handles, but it's almost certainly possible to pierce
    /// the abstraction veil of the HandleMap if you use this.
    ///
    /// However, it should not be possible to cause memory unsafety -- this
    /// crate has no unsafe code.
    #[inline]
    pub const fn from_raw(value: u64) -> Self {
        Self(value)
    }

    /// Get the internal u64 representation of this handle.
    ///
    /// # Caveat
    ///
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to access this value, however doing so is harmless.
    ///
    /// # Layout
    ///
    /// The layout of the returned value is as such:
    ///
    /// ```text
    /// [16 bits of generation | 16 bits of map id | 32 bit index]
    /// MSB                                                    LSB
    /// ```
    #[inline]
    pub const fn into_raw(self) -> u64 {
        self.0
    }

    /// Get the internal parts of this handle.
    ///
    /// Equivalent to `(self.index(), self.generation(), self.meta())`
    ///
    /// # Caveat
    ///
    /// This is a low level feature intended for advanced usage, typically you
    /// do not need to access this value, however doing so is harmless.
    #[inline]
    pub fn decompose(self) -> (u32, u16, u16) {
        (self.index() as u32, self.generation(), self.meta())
    }
}

struct EntriesDebug<'a, T>(&'a HandleMap<T>);

impl<'a, T> core::fmt::Debug for EntriesDebug<'a, T>
where
    T: core::fmt::Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_map().entries(self.0.iter_with_handles()).finish()
    }
}

impl<T> core::fmt::Debug for HandleMap<T>
where
    T: core::fmt::Debug,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("HandleMap")
            .field("id", &self.id)
            .field("entries", &EntriesDebug(self))
            .finish()
    }
}

impl core::fmt::Debug for Handle {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("Handle")
            .field("meta", &self.meta())
            .field("generation", &self.generation())
            .field("index", &self.index())
            .finish()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_handle_parts() {
        let h = Handle::from_raw_parts(0, 0, 0);
        assert_eq!(h.index(), 0);
        assert_eq!(h.generation(), 0);
        assert_eq!(h.meta(), 0);
        assert_eq!(h.meta(), h.map_id());

        let h = Handle::from_raw_parts(!0, 0, 0);
        assert_eq!(h.index(), (!0u32) as usize);
        assert_eq!(h.generation(), 0);
        assert_eq!(h.meta(), 0);
        assert_eq!(h.meta(), h.map_id());
        assert_eq!(h.decompose(), (h.index() as u32, h.generation(), h.meta()));

        assert_eq!(Handle::from_raw(h.into_raw()), h);

        let h = Handle::from_raw_parts(0, !0, 0);
        assert_eq!(h.index(), 0);
        assert_eq!(h.generation(), !0);
        assert_eq!(h.meta(), 0);
        assert_eq!(h.meta(), h.map_id());

        let h = Handle::from_raw_parts(0, 0, !0);
        assert_eq!(h.index(), 0);
        assert_eq!(h.generation(), 0);
        assert_eq!(h.meta(), !0);
        assert_eq!(h.meta(), h.map_id());

        let h = Handle::from_raw_parts(!0, !0, !0);
        assert_eq!(h.index(), (!0u32) as usize);
        assert_eq!(h.generation(), !0);
        assert_eq!(h.meta(), !0);
        assert_eq!(h.meta(), h.map_id());
    }

    #[derive(PartialEq, Debug, Clone, Copy)]
    pub(crate) struct Foobar(pub(crate) usize);

    #[test]
    fn test_correct_value_single() {
        let mut map = HandleMap::new();
        let handle = map.insert(Foobar(1234));
        assert_eq!(map.get(handle).unwrap(), &Foobar(1234));
        map.remove(handle).unwrap();
        assert_eq!(map.get(handle), None);
    }

    #[test]
    fn test_indexing() {
        let mut map = HandleMap::new();
        let handle = map.insert(Foobar(5454));
        assert_eq!(map[handle].0, 5454);
        map[handle] = Foobar(6767);
        assert_eq!(map[handle].0, 6767);
    }

    #[test]
    fn test_correct_value_multiple() {
        let mut map = HandleMap::new();
        let handle1 = map.insert(Foobar(1234));
        let handle2 = map.insert(Foobar(4321));
        assert_eq!(map.get(handle1).unwrap(), &Foobar(1234));
        assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
        map.remove(handle1).unwrap();
        assert_eq!(map.get(handle1), None);
        assert_eq!(map.get(handle2).unwrap(), &Foobar(4321));
    }

    #[test]
    fn test_wrong_map() {
        let mut map1 = HandleMap::new();
        let mut map2 = HandleMap::new();

        let handle1 = map1.insert(Foobar(1234));
        let handle2 = map2.insert(Foobar(1234));

        assert_eq!(map1.get(handle1).unwrap(), &Foobar(1234));
        assert_eq!(map2.get_mut(handle2).unwrap(), &mut Foobar(1234));

        assert_eq!(map1.get(handle2), None);
        assert_eq!(map2.get_mut(handle1), None);
        assert_eq!(handle1.meta(), map1.map_id());
        map1.raw_set_map_id(5);
        let h = map1.insert(Foobar(3));
        assert_eq!(h.meta(), map1.map_id());
        assert_eq!(h.meta(), 5);
    }

    #[test]
    fn test_bad_index() {
        let map: HandleMap<Foobar> = HandleMap::new();
        assert_eq!(map.get(Handle::from_raw_parts(100, 2, map.id)), None);
    }

    #[test]
    fn test_wrong_gen() {
        let mut map: HandleMap<usize> = HandleMap::new();
        let h = map.insert(3);
        map.remove(h).unwrap();
        assert_eq!(map.get(h), None);
        assert_eq!(map.remove(h), None);
    }

    #[test]
    fn test_resizing() {
        let mut map = HandleMap::new();
        let mut handles = alloc::vec![];
        // should trigger resize many times
        for i in 0..2000 {
            handles.push(map.insert(Foobar(i)))
        }
        for (i, &h) in handles.iter().enumerate() {
            assert_eq!(map[h], Foobar(i));
            assert_eq!(map.remove(h).unwrap(), Foobar(i));
        }
        let mut handles2 = alloc::vec![];
        for i in 2050..4100 {
            // Not really related to this test, but it's convenient to check this here.
            let h = map.insert(Foobar(i));
            handles2.push(h);
        }
        for (i, (&h0, h1)) in handles.iter().zip(handles2).enumerate() {
            // It's still a stale version, even though the index is occupied again.
            assert_eq!(map.get(h0), None);
            assert_eq!(map.get(h1).unwrap(), &Foobar(i + 2050));
        }
    }
    #[test]
    fn test_reserve() {
        let mut map = HandleMap::with_capacity(10);
        map.reserve(30);
        let mut handles = alloc::vec![];
        for i in 0..10 {
            handles.push(map.insert(Foobar(i)));
            map.reserve(3);
        }
        map.reserve(0);
        for i in 0..10 {
            handles.push(map.insert(Foobar(i + 10)))
        }
        map.reserve(map.capacity());
        for (i, &h) in handles.iter().enumerate() {
            assert_eq!(map[h], Foobar(i));
            assert_eq!(map.remove(h).unwrap(), Foobar(i));
        }
        let mut handles2 = alloc::vec![];
        for i in 20..30 {
            let h = map.insert(Foobar(i));
            handles2.push(h);
        }
        map.reserve(50);
        for (i, (&h0, h1)) in handles.iter().zip(handles2).enumerate() {
            assert_eq!(map.get(h0), None);
            assert_eq!(map.get(h1).unwrap(), &Foobar(i + 20));
        }
    }

    #[test]
    fn test_clear() {
        let mut map = HandleMap::new();
        map.clear(); // no-op.
        for _ in 0..2 {
            let mut handles = alloc::vec![];
            for i in 0..120 {
                handles.push(map.insert(Foobar(i)))
            }
            map.clear();
            for h in handles.iter() {
                assert_eq!(map.get(*h), None);
            }
        }
    }

    #[test]
    fn test_iters() {
        use alloc::collections::BTreeMap;
        let (mut map, handles) = mixed_handlemap();

        assert_eq!(map.len(), handles.len());
        let handle_to_foo: BTreeMap<Handle, usize> = handles.iter().copied().collect();
        let foo_to_handle: BTreeMap<usize, Handle> =
            handles.iter().copied().map(|t| (t.1, t.0)).collect();

        assert_eq!(handle_to_foo.len(), handles.len());
        assert_eq!(foo_to_handle.len(), handles.len());

        // iter
        let mut count = 0;
        for i in map.iter() {
            count += 1;
            assert!(foo_to_handle.contains_key(&i.0));
        }
        assert_eq!(count, handles.len());

        // iter_mut
        let mut count = 0;
        for i in map.iter_mut() {
            count += 1;
            assert!(foo_to_handle.contains_key(&i.0));
        }
        assert_eq!(count, handles.len());

        // into_iter
        let mut count = 0;
        for i in map.clone() {
            count += 1;
            assert!(foo_to_handle.contains_key(&i.0));
        }
        assert_eq!(count, handles.len());

        // iter_with_handles
        let mut count = 0;
        for (h, i) in map.iter_with_handles() {
            count += 1;
            assert!(foo_to_handle.contains_key(&i.0));
            assert_eq!(handle_to_foo[&h], i.0);
        }
        assert_eq!(count, handles.len());

        // iter_mut_with_handles
        let mut count = 0;
        for (h, i) in map.iter_mut_with_handles() {
            count += 1;
            assert!(foo_to_handle.contains_key(&i.0));
            assert_eq!(handle_to_foo[&h], i.0);
        }
        assert_eq!(count, handles.len());
    }

    pub(crate) fn mixed_handlemap() -> (HandleMap<Foobar>, Vec<(Handle, usize)>) {
        let mut handles = alloc::vec![];
        let mut map = HandleMap::with_capacity(10);
        let mut c = 0;
        for &sp in &[2, 3, 5] {
            for _ in 0..100 {
                c += 1;
                handles.push((map.insert(Foobar(c)), c));
                assert_eq!(map.len(), handles.len());
            }
            let mut i = 0;
            while i < handles.len() {
                map.remove(handles.swap_remove(i).0).unwrap();
                assert_eq!(map.len(), handles.len());
                i += sp;
            }
        }
        (map, handles)
    }
    #[test]
    fn test_find() {
        let mut m = HandleMap::new();
        let mut v = alloc::vec![];
        for i in 0..10usize {
            v.push(m.insert(i));
        }
        for (i, h) in v.iter().enumerate() {
            assert_eq!(m.find_handle(&i), Some(*h));
            assert!(m.contains_key(*h));
        }
        m.clear();
        assert!(m.is_empty());
        for (i, h) in v.iter().enumerate() {
            assert_eq!(m.find_handle(&i), None);
            assert!(!m.contains_key(*h));
        }
    }
    #[test]
    fn test_dbg() {
        let mut m = HandleMap::new_with_map_id(0);
        m.insert(0u32);
        assert_eq!(
            alloc::format!("{:?}", m),
            "HandleMap { id: 0, entries: {Handle { meta: 0, generation: 2, index: 0 }: 0} }"
        );
    }
}