1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
use std::{slice, mem};

fn naive(x: &[u8]) -> u64 {
    x.iter().fold(0, |a, b| a + b.count_ones() as u64)
}
/// Computes the [Hamming
/// weight](https://en.wikipedia.org/wiki/Hamming_weight) of `x`, that
/// is, the population count, or number of ones.
///
/// This is a highly optimised version of the following naive version:
///
/// ```rust
/// fn naive(x: &[u8]) -> u64 {
///     x.iter().fold(0, |a, b| a + b.count_ones() as u64)
/// }
/// ```
///
/// This uses Lauradoux Cédric's [tree-merging
/// approach](http://web.archive.org/web/20120411185540/http://perso.citi.insa-lyon.fr/claurado/hamming.html)
/// (as implemented by Kim Walisch in
/// [primesieve](http://primesieve.org/)) and achieves on the order of
/// 1-2 cycles per byte.
///
/// # Performance Comparison
///
/// | length | `naive` (ns) | `weight` (ns) | `naive`/`weight` |
/// |--:|--:|--:|--:|
/// | 1  | 5  | 16  | 0.31 |
/// | 10  | 29  | 51  | 0.56 |
/// | 100  | 284  | 392  | 0.72 |
/// | 1,000  | 2,780 | 340  | 8.2 |
/// | 10,000  | 27,700  | 2,300  | 12 |
/// | 100,000  | 276,000  | 17,900  | 15 |
/// | 1,000,000  | 2,770,000  | 172,000  | 16 |
///
/// # Example
///
/// ```rust
/// assert_eq!(hamming::weight(&[1, 0xFF, 1, 0xFF]), 1 + 8 + 1 + 8);
/// ```
pub fn weight(x: &[u8]) -> u64 {
    const M1: u64 = 0x5555555555555555;
    const M2: u64 = 0x3333333333333333;
    const M4: u64 = 0x0F0F0F0F0F0F0F0F;
    const M8: u64 = 0x00FF00FF00FF00FF;

    type T30 = [u64; 30];
    let size = mem::size_of::<T30>();
    let alignment = mem::align_of::<T30>();

    let ptr = x.as_ptr() as usize;
    // round up to the nearest multiple
    let aligned = (ptr + alignment - 1) / alignment * alignment;
    let distance = aligned - ptr;

    // can't fit a single T30 in
    if x.len() < size + distance {
        return naive(x)
    }

    let (head, middle) = x.split_at(distance);

    assert!(middle.as_ptr() as usize % alignment == 0);
    let thirty = unsafe {
        slice::from_raw_parts(middle.as_ptr() as *const T30,
                              middle.len() / size)
    };
    let tail = &middle[thirty.len() * size..];
    let mut count = naive(head) + naive(tail);
    for array in thirty {
        let mut acc = 0;
        for j_ in 0..10 {
            let j = j_ * 3;
            let mut count1 = array[j];
            let mut count2 = array[j + 1];
            let mut half1 = array[j + 2];
            let mut half2 = half1;
            half1 &= M1;
            half2 = (half2 >> 1) & M1;
            count1 -= (count1 >> 1) & M1;
            count2 -= (count2 >> 1) & M1;
            count1 += half1;
            count2 += half2;
            count1 = (count1 & M2) + ((count1 >> 2) & M2);
            count1 += (count2 & M2) + ((count2 >> 2) & M2);
            acc += (count1 & M4) + ((count1 >> 4) & M4);
        }
        acc = (acc & M8) + ((acc >> 8) & M8);
        acc =  acc       +  (acc >> 16);
        acc =  acc       +  (acc >> 32);
        count += acc & 0xFFFF;
    }
    count
}

#[cfg(test)]
mod tests {
    use quickcheck as qc;
    use rand;
    #[test]
    fn naive_smoke() {
        let tests = [(&[0u8] as &[u8], 0),
                     (&[1], 1),
                     (&[0xFF], 8),
                     (&[0xFF; 10], 8 * 10),
                     (&[1; 1000], 1000)];
        for &(v, expected) in &tests {
            assert_eq!(super::naive(v), expected);
        }
    }
    #[test]
    fn weight_qc() {
        fn prop(v: Vec<u8>, misalign: u8) -> qc::TestResult {
            let misalign = misalign as usize % 16;
            if misalign > v.len() {
                return qc::TestResult::discard();
            }
            let data = &v[misalign..];
            qc::TestResult::from_bool(super::weight(data) == super::naive(data))
        }
        qc::QuickCheck::new()
            .gen(qc::StdGen::new(rand::thread_rng(), 10_000))
            .quickcheck(prop as fn(Vec<u8>,u8) -> qc::TestResult)
    }
    #[test]
    fn weight_huge() {
        let v = vec![0b1001_1101; 10234567];
        assert_eq!(super::weight(&v),
                   v[0].count_ones() as u64 * v.len() as u64);
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use test;
    fn bench<F: FnMut(&[u8]) -> u64>(b: &mut test::Bencher, n: usize, mut f: F) {
        let data = vec![0xFF; n];
        b.iter(|| f(test::black_box(&data)))
    }
    macro_rules! test_mod {
        ($name: ident) => {
            mod $name {
                use test;
                use super::bench;
                use super::super::$name;
                #[bench]
                fn _0000001(b: &mut test::Bencher) { bench(b, 1, $name) }
                #[bench]
                fn _0000010(b: &mut test::Bencher) { bench(b, 10, $name) }
                #[bench]
                fn _0000100(b: &mut test::Bencher) { bench(b, 100, $name) }
                #[bench]
                fn _0001000(b: &mut test::Bencher) { bench(b, 1000, $name) }
                #[bench]
                fn _0010000(b: &mut test::Bencher) { bench(b, 10000, $name) }
                #[bench]
                fn _0100000(b: &mut test::Bencher) { bench(b, 100000, $name) }
                #[bench]
                fn _1000000(b: &mut test::Bencher) { bench(b, 1000000, $name) }
            }
        }
    }
    test_mod!(naive);
    test_mod!(weight);
}