1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//!
//! Extended Tetmesh. Describes a tetrahedron mesh data structure that is accompanied by its dual
//! voronoi topology.
//!

pub use super::surface::*;
use super::TetMesh;

use crate::mesh::attrib::*;
use crate::mesh::topology::*;
use crate::mesh::vertex_positions::*;
use crate::prim::Tetrahedron;
use crate::Real;
use std::slice::{Iter, IterMut};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};


/// Mesh composed of tetrahedra, extended with its dual voronoi topology.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Attrib, Intrinsic)]
pub struct TetMeshExt<T: Real> {
    #[attributes(Vertex, Cell, CellVertex, CellFace)]
    #[intrinsics(VertexPositions::vertex_positions)]
    pub tetmesh: TetMesh<T>,
    /// Lists of cell indices for each vertex. Since each vertex can have a variable number of cell
    /// neighbours, the `cell_offsets` field keeps track of where each subarray of indices begins.
    pub cell_indices: Vec<usize>,
    /// Offsets into the `cell_indices` array, one for each vertex. The last offset is always
    /// equal to the size of `cell_indices` for convenience.
    pub cell_offsets: Vec<usize>,
    /// Vertex cell Attributes.
    pub vertex_cell_attributes: AttribDict<VertexCellIndex>,
}

impl<T: Real> TetMeshExt<T> {
    /// This constant defines the triangle faces of each tet. The rule is that `i`th face of the
    /// tet is the one opposite to the `i`th vertex. The triangle starts with the smallest index.
    pub const TET_FACES: [[usize; 3]; 4] = [[1, 3, 2], [0, 2, 3], [0, 3, 1], [0, 1, 2]];

    pub fn new(verts: Vec<[T; 3]>, indices: Vec<usize>) -> TetMeshExt<T> {
        assert_eq!(indices.len() % 4, 0); // check that we have the right number of indices.

        let (cell_indices, cell_offsets) =
            Self::compute_dual_topology(verts.len(), &indices);

        TetMeshExt {
            tetmesh: TetMesh::new(verts, indices),
            cell_indices,
            cell_offsets,
            vertex_cell_attributes: AttribDict::new(),
        }
    }

    pub(crate) fn compute_dual_topology(num_verts: usize, indices: &[usize])
        -> (Vec<usize>, Vec<usize>) {

        let mut cell_indices = Vec::new();
        cell_indices.resize(num_verts, Vec::new());
        for (cidx, cell) in indices.chunks(4).enumerate() {
            for &vidx in cell {
                cell_indices[vidx].push(cidx);
            }
        }

        let mut cell_offsets = Vec::with_capacity(indices.len() / 4);
        cell_offsets.push(0);
        for neighbours in cell_indices.iter() {
            let last = *cell_offsets.last().unwrap();
            cell_offsets.push(last + neighbours.len());
        }

        (cell_indices
                .iter()
                .flat_map(|x| x.iter().cloned())
                .collect(), cell_offsets)
    }

    #[inline]
    pub fn cell_iter(&self) -> Iter<[usize; 4]> {
        self.tetmesh.cell_iter()
    }

    #[cfg(feature = "rayon")]
    #[inline]
    pub fn cell_par_iter(&self) -> rayon::slice::Iter<[usize; 4]> {
        self.tetmesh.cell_par_iter()
    }

    #[inline]
    pub fn cell_iter_mut(&mut self) -> IterMut<[usize; 4]> {
        self.tetmesh.cell_iter_mut()
    }

    #[cfg(feature = "rayon")]
    #[inline]
    pub fn cell_par_iter_mut(&mut self) -> rayon::slice::IterMut<[usize; 4]> {
        self.tetmesh.cell_par_iter_mut()
    }

    /// Cell accessor. These are vertex indices.
    #[inline]
    pub fn cell<CI: Into<CellIndex>>(&self, cidx: CI) -> &[usize; 4] {
        self.tetmesh.cell(cidx.into())
    }

    /// Return a slice of individual cells.
    #[inline]
    pub fn cells(&self) -> &[[usize; 4]] {
        self.tetmesh.cells()
    }

    /// Tetrahedron iterator.
    #[inline]
    pub fn tet_iter<'a>(&'a self) -> impl Iterator<Item = Tetrahedron<T>> + 'a {
        self.tetmesh.tet_iter()
    }

    /// Get a tetrahedron primitive corresponding to the given vertex indices.
    #[inline]
    pub fn tet_from_indices(&self, indices: &[usize; 4]) -> Tetrahedron<T> {
        self.tetmesh.tet_from_indices(indices)
    }

    /// Get a tetrahedron primitive corresponding to the given cell index.
    #[inline]
    pub fn tet<CI: Into<CellIndex>>(&self, cidx: CI) -> Tetrahedron<T> {
        self.tet_from_indices(self.cell(cidx))
    }

    /// Consumes the current mesh to produce a mesh with inverted tetrahedra.
    #[inline]
    pub fn inverted(mut self) -> TetMeshExt<T> {
        self.invert();
        self
    }

    /// Non consuming verion of the `inverted` function which simply modifies the given mesh.
    #[inline]
    pub fn invert(&mut self) {
        self.tetmesh.invert();
    }

    /// Convert this mesh into canonical form. This function inverts any inverted tetrahedron such
    /// that all tetrahedra are in canonical (non-inverted) form. The canonical form is determined
    /// by the shape matrix determinant of each tetrahedron. Canonical tetrahedra have a positive
    /// shape matrix determinant (see the `gut::ops::ShapeMatrix` trait and the
    /// `gut::prim::tetrahedron` module).
    #[inline]
    pub fn canonicalized(mut self) -> TetMeshExt<T> {
        self.canonicalize();
        self
    }

    /// Convert this mesh into canonical form. This function inverts any inverted tetrahedron such
    /// that all tetrahedra are in canonical (non-inverted) form. This is a non-consuming version
    /// of `canonicalized`.
    #[inline]
    pub fn canonicalize(&mut self) {
        self.tetmesh.canonicalize();
    }
}

impl<T: Real> Default for TetMeshExt<T> {
    /// Produce an empty `TetMeshExt`. This is not particularly useful on its own, however it can be
    /// used as a null case for various mesh algorithms.
    fn default() -> Self {
        TetMeshExt::new(vec![], vec![])
    }
}

/**
 * Define `TetMeshExt` topology
 */

impl<T: Real> NumVertices for TetMeshExt<T> {
    #[inline]
    fn num_vertices(&self) -> usize {
        self.tetmesh.num_vertices()
    }
}

impl<T: Real> NumCells for TetMeshExt<T> {
    #[inline]
    fn num_cells(&self) -> usize {
        self.tetmesh.num_cells()
    }
}

impl<T: Real> CellVertex for TetMeshExt<T> {
    #[inline]
    fn cell_to_vertex<CI>(&self, cidx: CI, which: usize) -> Option<VertexIndex>
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.cell_to_vertex(cidx.into(), which)
    }

    #[inline]
    fn cell_vertex<CI>(&self, cidx: CI, which: usize) -> Option<CellVertexIndex>
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.cell_vertex(cidx.into(), which)
    }

    #[inline]
    fn num_cell_vertices(&self) -> usize {
        self.tetmesh.num_cell_vertices()
    }

    #[inline]
    fn num_vertices_at_cell<CI>(&self, cidx: CI) -> usize
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.num_vertices_at_cell(cidx.into())
    }
}

impl<T: Real> CellFace for TetMeshExt<T> {
    #[inline]
    fn cell_to_face<CI>(&self, cidx: CI, which: usize) -> Option<FaceIndex>
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.cell_to_face(cidx.into(), which)
    }

    #[inline]
    fn cell_face<CI>(&self, cidx: CI, which: usize) -> Option<CellFaceIndex>
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.cell_face(cidx.into(), which)
    }

    #[inline]
    fn num_cell_faces(&self) -> usize {
        self.tetmesh.num_cell_faces()
    }

    #[inline]
    fn num_faces_at_cell<CI>(&self, cidx: CI) -> usize
    where
        CI: Copy + Into<CellIndex>,
    {
        self.tetmesh.num_faces_at_cell(cidx.into())
    }
}

impl<T: Real> VertexCell for TetMeshExt<T> {
    #[inline]
    fn vertex_to_cell<VI>(&self, vidx: VI, which: usize) -> Option<CellIndex>
    where
        VI: Copy + Into<VertexIndex>,
    {
        self.vertex_cell(vidx, which)
            .map(|vc_idx| self.cell_indices[vc_idx].into())
    }

    #[inline]
    fn vertex_cell<VI>(&self, vidx: VI, which: usize) -> Option<VertexCellIndex>
    where
        VI: Copy + Into<VertexIndex>,
    {
        if which >= self.num_cells_at_vertex(vidx) {
            return None;
        }

        let vidx = usize::from(vidx.into());

        debug_assert!(vidx < self.num_vertices());

        Some((self.cell_offsets[vidx] + which).into())
    }

    #[inline]
    fn num_vertex_cells(&self) -> usize {
        self.cell_indices.len()
    }

    #[inline]
    fn num_cells_at_vertex<VI>(&self, vidx: VI) -> usize
    where
        VI: Copy + Into<VertexIndex>,
    {
        let vidx = usize::from(vidx.into());
        self.cell_offsets[vidx + 1] - self.cell_offsets[vidx]
    }
}

impl<T: Real> From<TetMesh<T>> for TetMeshExt<T> {
    fn from(tetmesh: TetMesh<T>) -> TetMeshExt<T> {
        let flat_indices = crate::into_flat_slice4(tetmesh.indices.as_slice());
        let (cell_indices, cell_offsets) = Self::compute_dual_topology(tetmesh.vertex_positions.len(), flat_indices);

        TetMeshExt {
            tetmesh,
            cell_indices,
            cell_offsets,
            vertex_cell_attributes: AttribDict::new(),
        }
    }
}

impl<T: Real> From<TetMeshExt<T>> for TetMesh<T> {
    fn from(ext: TetMeshExt<T>) -> TetMesh<T> {
        ext.tetmesh
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use crate::index::Index;

    fn simple_tetmesh() -> TetMeshExt<f64> {
        let points = vec![
            [0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [1.0, 1.0, 0.0],
            [0.0, 0.0, 1.0],
            [1.0, 0.0, 1.0],
        ];
        let indices = vec![0, 4, 2, 5, 0, 5, 2, 3, 5, 3, 0, 1];

        TetMeshExt::new(points, indices)
    }

    #[test]
    fn tetmesh_test() {
        let mesh = simple_tetmesh();
        assert_eq!(mesh.num_vertices(), 6);
        assert_eq!(mesh.num_cells(), 3);
        assert_eq!(mesh.num_cell_vertices(), 12);
        assert_eq!(mesh.num_cell_faces(), 12);

        assert_eq!(Index::from(mesh.cell_vertex(1, 1)), 5);
        assert_eq!(Index::from(mesh.cell_vertex(0, 2)), 2);
        assert_eq!(Index::from(mesh.cell_face(2, 3)), 11);

        // Verify dual topology
        let vertex_cells = vec![
            vec![0, 1, 2],
            vec![2],
            vec![0, 1],
            vec![1, 2],
            vec![0],
            vec![0, 1, 2],
        ];
        for i in 0..vertex_cells.len() {
            assert_eq!(mesh.num_cells_at_vertex(i), vertex_cells[i].len());
            let mut local_cells: Vec<usize> = (0..mesh.num_cells_at_vertex(i))
                .map(|j| mesh.vertex_to_cell(i, j).unwrap().into())
                .collect();
            local_cells.sort();
            assert_eq!(local_cells, vertex_cells[i]);
        }
    }

    #[test]
    fn tet_iter_test() {
        use math::Vector3;
        let mesh = simple_tetmesh();
        let points = mesh.vertex_positions().to_vec();

        let pt = |i| Vector3::from(points[i]);

        let tets = vec![
            Tetrahedron(pt(0), pt(4), pt(2), pt(5)),
            Tetrahedron(pt(0), pt(5), pt(2), pt(3)),
            Tetrahedron(pt(5), pt(3), pt(0), pt(1)),
        ];

        for (tet, exptet) in mesh.tet_iter().zip(tets.into_iter()) {
            assert_eq!(tet, exptet);
        }
    }

    /// Verify that inverting canonical tets causes their signed volume to become negative.
    #[test]
    fn invert_test() {
        use crate::ops::Volume;
        let mut mesh = simple_tetmesh();

        // Before inversion, canonical tets should have positive volume.
        let mut vols = Vec::new();
        for ref tet in mesh.tet_iter() {
            vols.push(tet.volume());
            assert!(tet.signed_volume() > 0.0);
        }

        mesh.invert();

        // After inversion, all tets should have negative volume.
        for (tet, vol) in mesh.tet_iter().zip(vols) {
            assert_eq!(tet.signed_volume(), -vol);
        }
    }

    /// Test that canonicalizing tets fixes all inverted tets but doesn't touch tets that are
    /// already in canonical form (not inverted).
    #[test]
    fn canonicalize_test() {
        use crate::ops::Volume;

        let points = vec![
            [0.0, 0.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 1.0, 0.0],
            [1.0, 1.0, 0.0],
            [0.0, 0.0, 1.0],
            [1.0, 0.0, 1.0],
        ];
        let indices = vec![0, 4, 2, 5, 0, 5, 3, 2, 5, 3, 1, 0];

        let mut mesh = TetMeshExt::new(points.clone(), indices);

        // Two tets are inverted
        let vols: Vec<_> = mesh.tet_iter().map(|t| t.volume()).collect();
        assert!(mesh.tet(0).signed_volume() > 0.0);
        assert!(mesh.tet(1).signed_volume() < 0.0);
        assert!(mesh.tet(2).signed_volume() < 0.0);

        mesh.canonicalize();

        // Canonicalization fixes up all inverted tets
        for (tet, vol) in mesh.tet_iter().zip(vols) {
            assert_eq!(tet.signed_volume(), vol);
        }
    }
}