1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use math::{BaseNum, BaseFloat, Vector3, Matrix3, SquareMatrix};
use crate::ops::{Centroid, ShapeMatrix, Volume};
use std::ops::{Add, Sub, Mul};
use crate::Pod;

/// Generic tetrahedron with four points
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Tetrahedron<T>(
    pub Vector3<T>,
    pub Vector3<T>,
    pub Vector3<T>,
    pub Vector3<T>,
);

impl<T: Clone> Tetrahedron<T> {
    /// Build a Tetrahedron from a quadruple of indices.
    #[inline]
    pub fn from_indexed_slice<V: Into<[T; 3]> + Clone>(
        indices: &[usize; 4],
        slice: &[V],
    ) -> Tetrahedron<T> {
        Tetrahedron(
            slice[indices[0]].clone().into().into(),
            slice[indices[1]].clone().into().into(),
            slice[indices[2]].clone().into().into(),
            slice[indices[3]].clone().into().into(),
        )
    }

    /// Build a new tetrahedron from an array of vertex positions.
    #[inline]
    pub fn new([a,b,c,d]: [[T; 3]; 4]) -> Self {
        Tetrahedron(
            a.into(),
            b.into(),
            c.into(),
            d.into(),
        )
    }
}

impl<T: Pod> Tetrahedron<T> {
    /// Return this tetrahedron as an array of vertex positions.
    ///
    /// This can be useful for performing custom arithmetic on the tetrahedron positions.
    #[inline]
    pub fn as_array(&self) -> &[[T; 3]; 4] {
        debug_assert_eq!(
            std::mem::size_of::<[[T; 3]; 4]>(),
            std::mem::size_of::<Tetrahedron<T>>(),
        );

        unsafe { std::mem::transmute_copy(&self) }
    }
}

impl<T> Tetrahedron<T> {
    /// Convert this tet into an array of vertex positions.
    #[inline]
    pub fn into_array(self) -> [[T; 3]; 4] {
        [self.0.into(), self.1.into(), self.2.into(), self.3.into()]
    }
}

impl<T: BaseNum> Add for Tetrahedron<T> {
    type Output = Tetrahedron<T>;

    fn add(self, other: Tetrahedron<T>) -> Tetrahedron<T> {
        Tetrahedron(
            self.0 + other.0,
            self.1 + other.1,
            self.2 + other.2,
            self.3 + other.3,
        )
    }
}

impl<'a, T: BaseNum> Add for &'a Tetrahedron<T> {
    type Output = Tetrahedron<T>;

    fn add(self, other: &Tetrahedron<T>) -> Tetrahedron<T> {
        Tetrahedron(
            self.0 + other.0,
            self.1 + other.1,
            self.2 + other.2,
            self.3 + other.3,
        )
    }
}

impl<T: BaseNum> Sub for Tetrahedron<T> {
    type Output = Tetrahedron<T>;

    fn sub(self, other: Tetrahedron<T>) -> Tetrahedron<T> {
        Tetrahedron(
            self.0 - other.0,
            self.1 - other.1,
            self.2 - other.2,
            self.3 - other.3,
        )
    }
}

impl<'a, T: BaseNum> Sub for &'a Tetrahedron<T> {
    type Output = Tetrahedron<T>;

    fn sub(self, other: &Tetrahedron<T>) -> Tetrahedron<T> {
        Tetrahedron(
            self.0 - other.0,
            self.1 - other.1,
            self.2 - other.2,
            self.3 - other.3,
        )
    }
}

impl<T: BaseNum> Mul<T> for Tetrahedron<T> {
    type Output = Self;

    fn mul(self, rhs: T) -> Self {
        Tetrahedron(self.0 * rhs, self.1 * rhs, self.2 * rhs, self.3 * rhs)
    }
}

impl<'a, T: BaseNum> std::ops::Mul<T> for &'a Tetrahedron<T> {
    type Output = Tetrahedron<T>;

    fn mul(self, rhs: T) -> Tetrahedron<T> {
        Tetrahedron(self.0 * rhs, self.1 * rhs, self.2 * rhs, self.3 * rhs)
    }
}

impl<'a, T: BaseNum + num_traits::FromPrimitive> Centroid<[T; 3]> for &'a Tetrahedron<T> {
    #[inline]
    fn centroid(self) -> [T; 3] {
        ((self.0 + self.1 + self.2 + self.3) * T::from(0.25).unwrap()).into()
    }
}

/// Column-major array matrix.
impl<'a, T: BaseNum> ShapeMatrix<[[T; 3]; 3]> for &'a Tetrahedron<T> {
    #[inline]
    fn shape_matrix(self) -> [[T; 3]; 3] {
        [
            (self.0 - self.3).into(),
            (self.1 - self.3).into(),
            (self.2 - self.3).into(),
        ]
    }
}

impl<T: BaseNum> ShapeMatrix<[[T; 3]; 3]> for Tetrahedron<T> {
    #[inline]
    fn shape_matrix(self) -> [[T; 3]; 3] {
        [
            (self.0 - self.3).into(),
            (self.1 - self.3).into(),
            (self.2 - self.3).into(),
        ]
    }
}

impl<'a, T: BaseFloat> Volume<T> for &'a Tetrahedron<T> {
    #[inline]
    fn volume(self) -> T {
        self.signed_volume().abs()
    }
    #[inline]
    fn signed_volume(self) -> T {
        Matrix3::from(self.shape_matrix()).determinant() / T::from(6.0).unwrap()
    }
}

impl<T: BaseFloat> Volume<T> for Tetrahedron<T> {
    #[inline]
    fn volume(self) -> T {
        self.signed_volume().abs()
    }
    #[inline]
    fn signed_volume(self) -> T {
        Matrix3::from(self.shape_matrix()).determinant() / T::from(6.0).unwrap()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use approx::assert_relative_eq;

    fn tet() -> Tetrahedron<f64> {
        Tetrahedron(
            Vector3::from([0.0, 1.0, 0.0]),
            Vector3::from([-0.94281, -0.33333, 0.0]),
            Vector3::from([0.471405, -0.33333, 0.816498]),
            Vector3::from([0.471405, -0.33333, -0.816498]),
        )
    }

    #[test]
    fn volume_test() {
        assert_relative_eq!(tet().volume(), 0.5132, epsilon = 1e-4);
        assert_relative_eq!(tet().signed_volume(), 0.5132, epsilon = 1e-4);
    }

    #[test]
    fn shape_matrix_test() {
        let mtx = tet().shape_matrix();
        assert_relative_eq!(mtx[0][0], -0.471405, epsilon = 1e-4);
        assert_relative_eq!(mtx[0][1], 1.33333, epsilon = 1e-4);
        assert_relative_eq!(mtx[0][2], 0.816498, epsilon = 1e-4);
        assert_relative_eq!(mtx[1][0], -1.41421, epsilon = 1e-4);
        assert_relative_eq!(mtx[1][1], 0.0, epsilon = 1e-4);
        assert_relative_eq!(mtx[1][2], 0.816498, epsilon = 1e-4);
        assert_relative_eq!(mtx[2][0], 0.0, epsilon = 1e-4);
        assert_relative_eq!(mtx[2][1], 0.0, epsilon = 1e-4);
        assert_relative_eq!(mtx[2][2], 1.633, epsilon = 1e-4);
    }

    #[test]
    fn centroid_test() {
        let c = tet().centroid();
        assert_relative_eq!(c[0], 0.0, epsilon = 1e-4);
        assert_relative_eq!(c[1], 0.0, epsilon = 1e-4);
        assert_relative_eq!(c[2], 0.0, epsilon = 1e-4);
    }
}