1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
// MIT License
//
// Copyright (c) 2018 Alexander Serebryakov
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

//! # Trie
//!
//! Trie is the library that implements the [trie](https://en.wikipedia.org/wiki/Trie).
//!
//! Trie is a generic data structure, written `Trie<T, U>` where `T` is node key type and `U` is a
//! value type.
//!
//! # Motivation
//!
//! Trie may be faster than other data structures in some cases.
//!
//! For example, `Trie` may be used as a replacement for `std::HashMap` in case of a dictionary
//! where the number of words in dictionary is significantly less than number of different words in
//! the input and matching probability is low.
//!
//! ## Important
//!
//! Search performance is highly dependent on the data stored in `Trie` and may be
//! as significantly faster than `std::HashMap` as significantly slower.
//!
//! # Usage
//!
//! ```rust
//! use gtrie::Trie;
//!
//! let mut t = Trie::new();
//!
//! t.insert("this".chars(), 1);
//! t.insert("trie".chars(), 2);
//! t.insert("contains".chars(), 3);
//! t.insert("a".chars(), 4);
//! t.insert("number".chars(), 5);
//! t.insert("of".chars(), 6);
//! t.insert("words".chars(), 7);
//!
//! assert_eq!(t.contains_key("number".chars()), true);
//! assert_eq!(t.contains_key("not_existing_key".chars()), false);
//! assert_eq!(t.get_value("words".chars()), Some(7));
//! assert_eq!(t.get_value("none".chars()), None);
//! ```

mod trie_node;
use std::clone::Clone;
use std::cmp::{Eq, Ord};
use trie_node::TrieNode;

/// Prefix tree object
pub struct Trie<T, U> {
    /// Root of the prefix tree
    nodes: Vec<TrieNode<T>>,
    values: Vec<U>,
}

impl<T: Eq + Ord + Clone, U: Clone> Trie<T, U> {
    /// Creates a new `Trie` object
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let t = Trie::<char, String>::new();
    /// ```
    pub fn new() -> Trie<T, U> {
        Trie {
            nodes: Vec::<TrieNode<T>>::new(),
            values: Vec::<U>::new(),
        }
    }

    /// Checks that trie is empty
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let t = Trie::<char, f64>::new();
    /// assert_eq!(t.is_empty(), true);
    /// ```
    pub fn is_empty(&self) -> bool {
        self.nodes.is_empty()
    }

    /// Adds a new key to the trie
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let mut t = Trie::new();
    /// let data = "test".chars();
    ///
    /// t.insert(data, 42);
    /// assert_eq!(t.is_empty(), false);
    /// ```
    pub fn insert<V: Iterator<Item = T>>(&mut self, key: V, value: U) {
        let mut node_id = 0usize;

        if self.is_empty() {
            node_id = self.create_new_node();
        }

        for c in key {
            if let Some(id) = self.nodes[node_id].find(&c) {
                node_id = id;
            } else {
                let new_node_id = self.create_new_node();
                self.nodes[node_id].insert(&c, new_node_id);
                node_id = new_node_id;
            }
        }

        let value_id = match self.nodes[node_id].get_value() {
            Some(id) => {
                self.values[id] = value;
                id
            }
            None => {
                self.values.push(value);
                self.values.len() - 1
            }
        };

        self.nodes[node_id].set_value(value_id);
    }

    /// Clears the trie
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let mut t = Trie::new();
    /// let data = "test".chars();
    ///
    /// t.insert(data, String::from("test"));
    /// t.clear();
    /// assert_eq!(t.is_empty(), true);
    /// ```
    pub fn clear(&mut self) {
        self.nodes.clear();
        self.values.clear();
    }

    /// Looks for the key in trie
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let mut t = Trie::new();
    /// let data = "test".chars();
    /// let another_data = "notintest".chars();
    ///
    /// t.insert(data.clone(), 42);
    ///
    /// assert_eq!(t.is_empty(), false);
    /// assert_eq!(t.contains_key(data), true);
    /// assert_eq!(t.contains_key(another_data), false);
    /// ```
    pub fn contains_key<V: Iterator<Item = T>>(&self, key: V) -> bool {
        if self.values.is_empty() && self.nodes.is_empty() {
            return false;
        }

        match self.find_node(key) {
            Some(node_id) => {
                if self.nodes[node_id].may_be_leaf() {
                    true
                } else {
                    false
                }
            }
            None => false,
        }
    }

    /// Gets the value from the tree by key
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let mut t = Trie::new();
    /// let data = "test".chars();
    /// let another_data = "notintest".chars();
    ///
    /// t.insert(data.clone(), 42);
    ///
    /// assert_eq!(t.get_value(data), Some(42));
    /// assert_eq!(t.get_value(another_data), None);
    /// ```
    pub fn get_value<V: Iterator<Item = T>>(&self, key: V) -> Option<U> {
        match self.find_node(key) {
            // TODO: Properly handle the probable panic
            Some(node_id) => Some(self.values[self.nodes[node_id].get_value().unwrap()].clone()),
            None => None,
        }
    }

    /// Sets the value pointed by a key
    ///
    /// # Example
    ///
    /// ```rust
    /// use gtrie::Trie;
    ///
    /// let mut t = Trie::new();
    /// let data = "test".chars();
    /// let another_data = "notintest".chars();
    ///
    /// t.insert(data.clone(), 42);
    ///
    /// assert_eq!(t.get_value(data.clone()), Some(42));
    /// assert_eq!(t.set_value(data.clone(), 43), Ok(()));
    /// assert_eq!(t.get_value(data), Some(43));
    /// assert_eq!(t.set_value(another_data, 39), Err(()));
    /// ```
    pub fn set_value<V: Iterator<Item = T>>(&mut self, key: V, value: U) -> Result<(), ()> {
        match self.find_node(key) {
            Some(node_id) => {
                let value_id = self.nodes[node_id].get_value().unwrap();
                self.values[value_id] = value;
                Ok(())
            }
            None => Err(()),
        }
    }

    /// Finds the node in the trie by the key
    ///
    /// Internal API
    fn find_node<V: Iterator<Item = T>>(&self, key: V) -> Option<usize> {
        if self.nodes.is_empty() {
            return None;
        }

        let mut node_id = 0usize;

        for c in key {
            match self.nodes[node_id].find(&c) {
                Some(child_id) => node_id = child_id,
                None => return None,
            }
        }

        Some(node_id)
    }

    /// Creates a new node and returns the node id
    ///
    /// Internal API
    fn create_new_node(&mut self) -> usize {
        self.nodes.push(TrieNode::new(None));
        self.nodes.len() - 1
    }
}