1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// Copyright 2020 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Keychain trait and its main supporting types. The Identifier is a
//! semi-opaque structure (just bytes) to track keys within the Keychain.
//! BlindingFactor is a useful wrapper around a private key to help with
//! commitment generation.

use rand::thread_rng;
use std::cmp::min;
use std::convert::TryFrom;
use std::io::Cursor;
use std::{error, fmt};

use crate::blake2::blake2b::blake2b;
use crate::extkey_bip32::{self, ChildNumber};
use serde::{de, ser}; //TODO: Convert errors to use ErrorKind

use crate::util::secp::constants::SECRET_KEY_SIZE;
use crate::util::secp::key::{PublicKey, SecretKey, ZERO_KEY};
use crate::util::secp::pedersen::Commitment;
use crate::util::secp::{self, Message, Secp256k1, Signature};
use crate::util::ToHex;
use zeroize::Zeroize;

use byteorder::{BigEndian, ReadBytesExt, WriteBytesExt};

// Size of an identifier in bytes
pub const IDENTIFIER_SIZE: usize = 17;

#[derive(PartialEq, Eq, Clone, Debug, Serialize, Deserialize)]
pub enum Error {
	Secp(secp::Error),
	KeyDerivation(extkey_bip32::Error),
	Transaction(String),
	RangeProof(String),
	SwitchCommitment,
}

impl From<secp::Error> for Error {
	fn from(e: secp::Error) -> Error {
		Error::Secp(e)
	}
}

impl From<extkey_bip32::Error> for Error {
	fn from(e: extkey_bip32::Error) -> Error {
		Error::KeyDerivation(e)
	}
}

impl error::Error for Error {
	fn description(&self) -> &str {
		match *self {
			_ => "some kind of keychain error",
		}
	}
}

impl fmt::Display for Error {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		match *self {
			_ => write!(f, "some kind of keychain error"),
		}
	}
}

#[derive(Clone, PartialEq, Eq, Ord, Hash, PartialOrd)]
pub struct Identifier([u8; IDENTIFIER_SIZE]);

impl ser::Serialize for Identifier {
	fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
	where
		S: ser::Serializer,
	{
		serializer.serialize_str(&self.to_hex())
	}
}

impl<'de> de::Deserialize<'de> for Identifier {
	fn deserialize<D>(deserializer: D) -> Result<Identifier, D::Error>
	where
		D: de::Deserializer<'de>,
	{
		deserializer.deserialize_str(IdentifierVisitor)
	}
}

struct IdentifierVisitor;

impl<'de> de::Visitor<'de> for IdentifierVisitor {
	type Value = Identifier;

	fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
		formatter.write_str("an identifier")
	}

	fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
	where
		E: de::Error,
	{
		let identifier = Identifier::from_hex(s).unwrap();
		Ok(identifier)
	}
}

impl Identifier {
	pub fn zero() -> Identifier {
		Identifier::from_bytes(&[0; IDENTIFIER_SIZE])
	}

	pub fn from_path(path: &ExtKeychainPath) -> Identifier {
		path.to_identifier()
	}

	pub fn to_path(&self) -> ExtKeychainPath {
		ExtKeychainPath::from_identifier(&self)
	}

	pub fn to_value_path(&self, value: u64) -> ValueExtKeychainPath {
		// TODO: proper support for different switch commitment schemes
		// For now it is assumed all outputs are using the regular switch commitment scheme
		ValueExtKeychainPath {
			value,
			ext_keychain_path: self.to_path(),
			switch: SwitchCommitmentType::Regular,
		}
	}

	/// output the path itself, for insertion into bulletproof
	/// recovery processes can grind through possiblities to find the
	/// correct length if required
	pub fn serialize_path(&self) -> [u8; IDENTIFIER_SIZE - 1] {
		let mut retval = [0u8; IDENTIFIER_SIZE - 1];
		retval.copy_from_slice(&self.0[1..IDENTIFIER_SIZE]);
		retval
	}

	/// restore from a serialized path
	pub fn from_serialized_path(len: u8, p: &[u8]) -> Identifier {
		let mut id = [0; IDENTIFIER_SIZE];
		id[0] = len;
		id[1..IDENTIFIER_SIZE].clone_from_slice(&p[0..(IDENTIFIER_SIZE - 1)]);
		Identifier(id)
	}

	/// Return the parent path
	pub fn parent_path(&self) -> Identifier {
		let mut p = ExtKeychainPath::from_identifier(&self);
		if p.depth > 0 {
			p.path[p.depth as usize - 1] = ChildNumber::from(0);
			p.depth -= 1;
		}
		Identifier::from_path(&p)
	}
	pub fn from_bytes(bytes: &[u8]) -> Identifier {
		let mut identifier = [0; IDENTIFIER_SIZE];
		identifier[..min(IDENTIFIER_SIZE, bytes.len())]
			.clone_from_slice(&bytes[..min(IDENTIFIER_SIZE, bytes.len())]);
		Identifier(identifier)
	}

	pub fn to_bytes(&self) -> [u8; IDENTIFIER_SIZE] {
		self.0
	}

	pub fn from_pubkey(secp: &Secp256k1, pubkey: &PublicKey) -> Identifier {
		let bytes = pubkey.serialize_vec(secp, true);
		let identifier = blake2b(IDENTIFIER_SIZE, &[], &bytes[..]);
		Identifier::from_bytes(&identifier.as_bytes())
	}

	/// Return the identifier of the secret key
	/// which is the blake2b (10 byte) digest of the PublicKey
	/// corresponding to the secret key provided.
	pub fn from_secret_key(secp: &Secp256k1, key: &SecretKey) -> Result<Identifier, Error> {
		let key_id = PublicKey::from_secret_key(secp, key)?;
		Ok(Identifier::from_pubkey(secp, &key_id))
	}

	pub fn from_hex(hex: &str) -> Result<Identifier, Error> {
		let bytes = util::from_hex(hex).unwrap();
		Ok(Identifier::from_bytes(&bytes))
	}

	pub fn to_bip_32_string(&self) -> String {
		let p = ExtKeychainPath::from_identifier(&self);
		let mut retval = String::from("m");
		for i in 0..p.depth {
			retval.push_str(&format!("/{}", <u32>::from(p.path[i as usize])));
		}
		retval
	}
}

impl AsRef<[u8]> for Identifier {
	fn as_ref(&self) -> &[u8] {
		&self.0.as_ref()
	}
}

impl ::std::fmt::Debug for Identifier {
	fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
		write!(f, "{}(", stringify!(Identifier))?;
		write!(f, "{}", self.to_hex())?;
		write!(f, ")")
	}
}

impl fmt::Display for Identifier {
	fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
		write!(f, "{}", self.to_hex())
	}
}

#[derive(Default, Clone, PartialEq, Serialize, Deserialize, Zeroize)]
#[zeroize(drop)]
pub struct BlindingFactor([u8; SECRET_KEY_SIZE]);

// Dummy `Debug` implementation that prevents secret leakage.
impl fmt::Debug for BlindingFactor {
	fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> fmt::Result {
		write!(f, "BlindingFactor(<secret key hidden>)")
	}
}

impl AsRef<[u8]> for BlindingFactor {
	fn as_ref(&self) -> &[u8] {
		&self.0
	}
}

impl BlindingFactor {
	pub fn from_secret_key(skey: SecretKey) -> BlindingFactor {
		BlindingFactor::from_slice(&skey.as_ref())
	}

	pub fn from_slice(data: &[u8]) -> BlindingFactor {
		let mut blind = [0; SECRET_KEY_SIZE];
		blind[..min(SECRET_KEY_SIZE, data.len())]
			.clone_from_slice(&data[..min(SECRET_KEY_SIZE, data.len())]);
		BlindingFactor(blind)
	}

	pub fn zero() -> BlindingFactor {
		BlindingFactor::from_secret_key(ZERO_KEY)
	}

	pub fn is_zero(&self) -> bool {
		self.0 == ZERO_KEY.as_ref()
	}

	pub fn rand(secp: &Secp256k1) -> BlindingFactor {
		BlindingFactor::from_secret_key(SecretKey::new(secp, &mut thread_rng()))
	}

	pub fn from_hex(hex: &str) -> Result<BlindingFactor, Error> {
		let bytes = util::from_hex(hex).unwrap();
		Ok(BlindingFactor::from_slice(&bytes))
	}

	// Handle "zero" blinding_factor correctly, by returning the "zero" key.
	// We need this for some of the tests.
	pub fn secret_key(&self, secp: &Secp256k1) -> Result<SecretKey, Error> {
		if self.is_zero() {
			Ok(ZERO_KEY)
		} else {
			SecretKey::from_slice(secp, &self.0).map_err(Error::Secp)
		}
	}

	// Convenient (and robust) way to add two blinding_factors together.
	// Handles "zero" blinding_factors correctly.
	pub fn add(&self, other: &BlindingFactor, secp: &Secp256k1) -> Result<BlindingFactor, Error> {
		let keys = vec![self, other]
			.into_iter()
			.filter(|x| !x.is_zero())
			.filter_map(|x| x.secret_key(&secp).ok())
			.collect::<Vec<_>>();
		if keys.is_empty() {
			Ok(BlindingFactor::zero())
		} else {
			let sum = secp.blind_sum(keys, vec![])?;
			Ok(BlindingFactor::from_secret_key(sum))
		}
	}

	/// Split a blinding_factor (aka secret_key) into a pair of
	/// blinding_factors. We use one of these (k1) to sign the tx_kernel (k1G)
	/// and the other gets aggregated in the block_header as the "offset".
	/// This prevents an actor from being able to sum a set of inputs, outputs
	/// and kernels from a block to identify and reconstruct a particular tx
	/// from a block. You would need both k1, k2 to do this.
	pub fn split(
		&self,
		blind_1: &BlindingFactor,
		secp: &Secp256k1,
	) -> Result<BlindingFactor, Error> {
		// use blind_sum to subtract skey_1 from our key such that skey = skey_1 + skey_2
		let skey = self.secret_key(secp)?;
		let skey_1 = blind_1.secret_key(secp)?;
		let skey_2 = secp.blind_sum(vec![skey], vec![skey_1])?;
		Ok(BlindingFactor::from_secret_key(skey_2))
	}
}

/// Accumulator to compute the sum of blinding factors. Keeps track of each
/// factor as well as the "sign" with which they should be combined.
#[derive(Clone, Debug, PartialEq)]
pub struct BlindSum {
	pub positive_key_ids: Vec<ValueExtKeychainPath>,
	pub negative_key_ids: Vec<ValueExtKeychainPath>,
	pub positive_blinding_factors: Vec<BlindingFactor>,
	pub negative_blinding_factors: Vec<BlindingFactor>,
}

impl BlindSum {
	/// Creates a new blinding factor sum.
	pub fn new() -> BlindSum {
		BlindSum {
			positive_key_ids: vec![],
			negative_key_ids: vec![],
			positive_blinding_factors: vec![],
			negative_blinding_factors: vec![],
		}
	}

	pub fn add_key_id(mut self, path: ValueExtKeychainPath) -> BlindSum {
		self.positive_key_ids.push(path);
		self
	}

	pub fn sub_key_id(mut self, path: ValueExtKeychainPath) -> BlindSum {
		self.negative_key_ids.push(path);
		self
	}

	/// Adds the provided key to the sum of blinding factors.
	pub fn add_blinding_factor(mut self, blind: BlindingFactor) -> BlindSum {
		self.positive_blinding_factors.push(blind);
		self
	}

	/// Subtracts the provided key to the sum of blinding factors.
	pub fn sub_blinding_factor(mut self, blind: BlindingFactor) -> BlindSum {
		self.negative_blinding_factors.push(blind);
		self
	}
}

/// Encapsulates a max 4-level deep BIP32 path, which is the most we can
/// currently fit into a rangeproof message. The depth encodes how far the
/// derivation depths go and allows differentiating paths. As m/0, m/0/0
/// or m/0/0/0/0 result in different derivations, a path needs to encode
/// its maximum depth.
#[derive(Copy, Clone, PartialEq, Eq, Debug, Deserialize)]
pub struct ExtKeychainPath {
	pub depth: u8,
	pub path: [extkey_bip32::ChildNumber; 4],
}

impl ExtKeychainPath {
	/// Return a new chain path with given derivation and depth
	pub fn new(depth: u8, d0: u32, d1: u32, d2: u32, d3: u32) -> ExtKeychainPath {
		ExtKeychainPath {
			depth: depth,
			path: [
				ChildNumber::from(d0),
				ChildNumber::from(d1),
				ChildNumber::from(d2),
				ChildNumber::from(d3),
			],
		}
	}

	/// from an Indentifier [manual deserialization]
	pub fn from_identifier(id: &Identifier) -> ExtKeychainPath {
		let mut rdr = Cursor::new(id.0.to_vec());
		ExtKeychainPath {
			depth: rdr.read_u8().unwrap(),
			path: [
				ChildNumber::from(rdr.read_u32::<BigEndian>().unwrap()),
				ChildNumber::from(rdr.read_u32::<BigEndian>().unwrap()),
				ChildNumber::from(rdr.read_u32::<BigEndian>().unwrap()),
				ChildNumber::from(rdr.read_u32::<BigEndian>().unwrap()),
			],
		}
	}

	/// to an Identifier [manual serialization]
	pub fn to_identifier(&self) -> Identifier {
		let mut wtr = vec![];
		wtr.write_u8(self.depth).unwrap();
		wtr.write_u32::<BigEndian>(<u32>::from(self.path[0]))
			.unwrap();
		wtr.write_u32::<BigEndian>(<u32>::from(self.path[1]))
			.unwrap();
		wtr.write_u32::<BigEndian>(<u32>::from(self.path[2]))
			.unwrap();
		wtr.write_u32::<BigEndian>(<u32>::from(self.path[3]))
			.unwrap();
		let mut retval = [0u8; IDENTIFIER_SIZE];
		retval.copy_from_slice(&wtr[0..IDENTIFIER_SIZE]);
		Identifier(retval)
	}

	/// Last part of the path (for last n_child)
	pub fn last_path_index(&self) -> u32 {
		if self.depth == 0 {
			0
		} else {
			<u32>::from(self.path[self.depth as usize - 1])
		}
	}
}

/// Wrapper for amount + switch + path
#[derive(Copy, Clone, PartialEq, Eq, Debug, Deserialize)]
pub struct ValueExtKeychainPath {
	pub value: u64,
	pub ext_keychain_path: ExtKeychainPath,
	pub switch: SwitchCommitmentType,
}

pub trait Keychain: Sync + Send + Clone {
	/// Generates a keychain from a raw binary seed (which has already been
	/// decrypted if applicable).
	fn from_seed(seed: &[u8], is_floo: bool) -> Result<Self, Error>;

	/// Generates a keychain from a list of space-separated mnemonic words
	fn from_mnemonic(word_list: &str, extension_word: &str, is_floo: bool) -> Result<Self, Error>;

	/// Generates a keychain from a randomly generated seed. Mostly used for tests.
	fn from_random_seed(is_floo: bool) -> Result<Self, Error>;

	/// XOR masks the keychain's master key against another key
	fn mask_master_key(&mut self, mask: &SecretKey) -> Result<(), Error>;

	/// Root identifier for that keychain
	fn root_key_id() -> Identifier;

	/// Derives a key id from the depth of the keychain and the values at each
	/// depth level. See `KeychainPath` for more information.
	fn derive_key_id(depth: u8, d1: u32, d2: u32, d3: u32, d4: u32) -> Identifier;

	/// The public root key
	fn public_root_key(&self) -> PublicKey;

	fn derive_key(
		&self,
		amount: u64,
		id: &Identifier,
		switch: SwitchCommitmentType,
	) -> Result<SecretKey, Error>;
	fn commit(
		&self,
		amount: u64,
		id: &Identifier,
		switch: SwitchCommitmentType,
	) -> Result<Commitment, Error>;
	fn blind_sum(&self, blind_sum: &BlindSum) -> Result<BlindingFactor, Error>;
	fn sign(
		&self,
		msg: &Message,
		amount: u64,
		id: &Identifier,
		switch: SwitchCommitmentType,
	) -> Result<Signature, Error>;
	fn sign_with_blinding(&self, _: &Message, _: &BlindingFactor) -> Result<Signature, Error>;
	fn secp(&self) -> &Secp256k1;
}

#[derive(PartialEq, Eq, Clone, Copy, Debug, Serialize, Deserialize)]
pub enum SwitchCommitmentType {
	None,
	Regular,
}

impl TryFrom<u8> for SwitchCommitmentType {
	type Error = ();

	fn try_from(value: u8) -> Result<Self, Self::Error> {
		match value {
			0 => Ok(SwitchCommitmentType::None),
			1 => Ok(SwitchCommitmentType::Regular),
			_ => Err(()),
		}
	}
}

impl From<SwitchCommitmentType> for u8 {
	fn from(switch: SwitchCommitmentType) -> Self {
		match switch {
			SwitchCommitmentType::None => 0,
			SwitchCommitmentType::Regular => 1,
		}
	}
}

#[cfg(test)]
mod test {
	use rand::thread_rng;

	use crate::types::{BlindingFactor, ExtKeychainPath, Identifier};
	use crate::util::secp::constants::SECRET_KEY_SIZE;
	use crate::util::secp::key::{SecretKey, ZERO_KEY};
	use crate::util::secp::Secp256k1;
	use std::slice::from_raw_parts;

	// This tests cleaning of BlindingFactor (e.g. secret key) on Drop.
	// To make this test fail, just remove `Zeroize` derive from `BlindingFactor` definition.
	#[test]
	fn blinding_factor_clear_on_drop() {
		// Create buffer for blinding factor filled with non-zero bytes.
		let bf_bytes = [0xAA; SECRET_KEY_SIZE];
		let ptr = {
			// Fill blinding factor with some "sensitive" data
			let bf = BlindingFactor::from_slice(&bf_bytes[..]);
			bf.0.as_ptr()

			// -- after this line BlindingFactor should be zeroed
		};

		// Unsafely get data from where BlindingFactor was in memory. Should be all zeros.
		let bf_bytes = unsafe { from_raw_parts(ptr, SECRET_KEY_SIZE) };

		// There should be all zeroes.
		let mut all_zeros = true;
		for b in bf_bytes {
			if *b != 0x00 {
				all_zeros = false;
			}
		}

		assert!(all_zeros)
	}

	// split a key, sum the split keys and confirm the sum matches the original key
	#[test]
	fn split_blinding_factor() {
		let secp = Secp256k1::new();
		let skey_in = SecretKey::new(&secp, &mut thread_rng());
		let blind = BlindingFactor::from_secret_key(skey_in.clone());
		let blind_1 = BlindingFactor::rand(&secp);
		let blind_2 = blind.split(&blind_1, &secp).unwrap();

		let mut skey_sum = blind_1.secret_key(&secp).unwrap();
		let skey_2 = blind_2.secret_key(&secp).unwrap();
		skey_sum.add_assign(&secp, &skey_2).unwrap();
		assert_eq!(skey_in, skey_sum);
	}

	// Sanity check that we can add the zero key to a secret key and it is still
	// the same key that we started with (k + 0 = k)
	#[test]
	fn zero_key_addition() {
		let secp = Secp256k1::new();
		let skey_in = SecretKey::new(&secp, &mut thread_rng());
		let skey_zero = ZERO_KEY;

		let mut skey_out = skey_in.clone();
		skey_out.add_assign(&secp, &skey_zero).unwrap();

		assert_eq!(skey_in, skey_out);
	}

	// Check path identifiers
	#[test]
	fn path_identifier() {
		let path = ExtKeychainPath::new(4, 1, 2, 3, 4);
		let id = Identifier::from_path(&path);
		let ret_path = id.to_path();
		assert_eq!(path, ret_path);

		let path = ExtKeychainPath::new(
			1,
			<u32>::max_value(),
			<u32>::max_value(),
			3,
			<u32>::max_value(),
		);
		let id = Identifier::from_path(&path);
		let ret_path = id.to_path();
		assert_eq!(path, ret_path);

		println!("id: {:?}", id);
		println!("ret_path {:?}", ret_path);

		let path = ExtKeychainPath::new(3, 0, 0, 10, 0);
		let id = Identifier::from_path(&path);
		let parent_id = id.parent_path();
		let expected_path = ExtKeychainPath::new(2, 0, 0, 0, 0);
		let expected_id = Identifier::from_path(&expected_path);
		assert_eq!(expected_id, parent_id);
	}
}