1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
// Copyright 2021 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Utility functions to build Grin transactions. Handles the blinding of
//! inputs and outputs, maintaining the sum of blinding factors, producing
//! the excess signature, etc.
//!
//! Each building function is a combinator that produces a function taking
//! a transaction a sum of blinding factors, to return another transaction
//! and sum. Combinators can then be chained and executed using the
//! _transaction_ function.
//!
//! Example:
//! build::transaction(
//!   KernelFeatures::Plain{ fee: 2.try_into().unwrap() },
//!   vec![
//!     input_rand(75),
//!     output_rand(42),
//!     output_rand(32),
//!   ]
//! )

use crate::core::{Input, KernelFeatures, Output, OutputFeatures, Transaction, TxKernel};
use crate::libtx::proof::{self, ProofBuild};
use crate::libtx::{aggsig, Error};
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain, SwitchCommitmentType};

/// Context information available to transaction combinators.
pub struct Context<'a, K, B>
where
	K: Keychain,
	B: ProofBuild,
{
	/// The keychain used for key derivation
	pub keychain: &'a K,
	/// The bulletproof builder
	pub builder: &'a B,
}

/// Function type returned by the transaction combinators. Transforms a
/// (Transaction, BlindSum) tuple into another, given the provided context.
/// Will return an Err if seomthing went wrong at any point during transaction building.
pub type Append<K, B> = dyn for<'a> Fn(
	&'a mut Context<'_, K, B>,
	Result<(Transaction, BlindSum), Error>,
) -> Result<(Transaction, BlindSum), Error>;

/// Adds an input with the provided value and blinding key to the transaction
/// being built.
fn build_input<K, B>(value: u64, features: OutputFeatures, key_id: Identifier) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	Box::new(
		move |build, acc| -> Result<(Transaction, BlindSum), Error> {
			if let Ok((tx, sum)) = acc {
				let commit =
					build
						.keychain
						.commit(value, &key_id, SwitchCommitmentType::Regular)?;
				// TODO: proper support for different switch commitment schemes
				let input = Input::new(features, commit);
				Ok((
					tx.with_input(input),
					sum.sub_key_id(key_id.to_value_path(value)),
				))
			} else {
				acc
			}
		},
	)
}

/// Adds an input with the provided value and blinding key to the transaction
/// being built.
pub fn input<K, B>(value: u64, key_id: Identifier) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	debug!(
		"Building input (spending regular output): {}, {}",
		value, key_id
	);
	build_input(value, OutputFeatures::Plain, key_id)
}

/// Adds a coinbase input spending a coinbase output.
pub fn coinbase_input<K, B>(value: u64, key_id: Identifier) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	debug!("Building input (spending coinbase): {}, {}", value, key_id);
	build_input(value, OutputFeatures::Coinbase, key_id)
}

/// Adds an output with the provided value and key identifier from the
/// keychain.
pub fn output<K, B>(value: u64, key_id: Identifier) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	Box::new(
		move |build, acc| -> Result<(Transaction, BlindSum), Error> {
			let (tx, sum) = acc?;

			// TODO: proper support for different switch commitment schemes
			let switch = SwitchCommitmentType::Regular;

			let commit = build.keychain.commit(value, &key_id, switch)?;

			debug!("Building output: {}, {:?}", value, commit);

			let proof = proof::create(
				build.keychain,
				build.builder,
				value,
				&key_id,
				switch,
				commit,
				None,
			)?;

			Ok((
				tx.with_output(Output::new(OutputFeatures::Plain, commit, proof)),
				sum.add_key_id(key_id.to_value_path(value)),
			))
		},
	)
}

/// Adds a known excess value on the transaction being built. Usually used in
/// combination with the initial_tx function when a new transaction is built
/// by adding to a pre-existing one.
pub fn with_excess<K, B>(excess: BlindingFactor) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	Box::new(
		move |_build, acc| -> Result<(Transaction, BlindSum), Error> {
			acc.map(|(tx, sum)| (tx, sum.add_blinding_factor(excess.clone())))
		},
	)
}

/// Sets an initial transaction to add to when building a new transaction.
pub fn initial_tx<K, B>(tx: Transaction) -> Box<Append<K, B>>
where
	K: Keychain,
	B: ProofBuild,
{
	Box::new(
		move |_build, acc| -> Result<(Transaction, BlindSum), Error> {
			acc.map(|(_, sum)| (tx.clone(), sum))
		},
	)
}

/// Takes an existing transaction and partially builds on it.
///
/// Example:
/// let (tx, sum) = build::transaction(tx, vec![input_rand(4), output_rand(1))], keychain)?;
///
pub fn partial_transaction<K, B>(
	tx: Transaction,
	elems: &[Box<Append<K, B>>],
	keychain: &K,
	builder: &B,
) -> Result<(Transaction, BlindingFactor), Error>
where
	K: Keychain,
	B: ProofBuild,
{
	let mut ctx = Context { keychain, builder };
	let (tx, sum) = elems
		.iter()
		.fold(Ok((tx, BlindSum::new())), |acc, elem| elem(&mut ctx, acc))?;
	let blind_sum = ctx.keychain.blind_sum(&sum)?;
	Ok((tx, blind_sum))
}

/// Builds a complete transaction.
/// NOTE: We only use this in tests (for convenience).
/// In the real world we use signature aggregation across multiple participants.
pub fn transaction<K, B>(
	features: KernelFeatures,
	elems: &[Box<Append<K, B>>],
	keychain: &K,
	builder: &B,
) -> Result<Transaction, Error>
where
	K: Keychain,
	B: ProofBuild,
{
	let mut kernel = TxKernel::with_features(features);

	// Construct the message to be signed.
	let msg = kernel.msg_to_sign()?;

	// Generate kernel public excess and associated signature.
	let excess = BlindingFactor::rand(&keychain.secp());
	let skey = excess.secret_key(&keychain.secp())?;
	kernel.excess = keychain.secp().commit(0, skey)?;
	let pubkey = &kernel.excess.to_pubkey(&keychain.secp())?;
	kernel.excess_sig = aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey))?;
	kernel.verify()?;
	transaction_with_kernel(elems, kernel, excess, keychain, builder)
}

/// Build a complete transaction with the provided kernel and corresponding private excess.
/// NOTE: Only used in tests (for convenience).
/// Cannot recommend passing private excess around like this in the real world.
pub fn transaction_with_kernel<K, B>(
	elems: &[Box<Append<K, B>>],
	kernel: TxKernel,
	excess: BlindingFactor,
	keychain: &K,
	builder: &B,
) -> Result<Transaction, Error>
where
	K: Keychain,
	B: ProofBuild,
{
	let mut ctx = Context { keychain, builder };
	let (tx, sum) = elems
		.iter()
		.fold(Ok((Transaction::empty(), BlindSum::new())), |acc, elem| {
			elem(&mut ctx, acc)
		})?;
	let blind_sum = ctx.keychain.blind_sum(&sum)?;

	// Update tx with new kernel and offset.
	let mut tx = tx.replace_kernel(kernel);
	tx.offset = blind_sum.split(&excess, &keychain.secp())?;
	Ok(tx)
}

// Just a simple test, most exhaustive tests in the core.
#[cfg(test)]
mod test {
	use super::*;
	use crate::core::transaction::Weighting;
	use crate::global;
	use crate::libtx::ProofBuilder;
	use keychain::{ExtKeychain, ExtKeychainPath};

	#[test]
	fn blind_simple_tx() {
		global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
		let keychain = ExtKeychain::from_random_seed(false).unwrap();
		let builder = ProofBuilder::new(&keychain);
		let key_id1 = ExtKeychainPath::new(1, 1, 0, 0, 0).to_identifier();
		let key_id2 = ExtKeychainPath::new(1, 2, 0, 0, 0).to_identifier();
		let key_id3 = ExtKeychainPath::new(1, 3, 0, 0, 0).to_identifier();

		let tx = transaction(
			KernelFeatures::Plain { fee: 2.into() },
			&[input(10, key_id1), input(12, key_id2), output(20, key_id3)],
			&keychain,
			&builder,
		)
		.unwrap();

		tx.validate(Weighting::AsTransaction).unwrap();
	}

	#[test]
	fn blind_simple_tx_with_offset() {
		global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
		let keychain = ExtKeychain::from_random_seed(false).unwrap();
		let builder = ProofBuilder::new(&keychain);
		let key_id1 = ExtKeychainPath::new(1, 1, 0, 0, 0).to_identifier();
		let key_id2 = ExtKeychainPath::new(1, 2, 0, 0, 0).to_identifier();
		let key_id3 = ExtKeychainPath::new(1, 3, 0, 0, 0).to_identifier();

		let tx = transaction(
			KernelFeatures::Plain { fee: 2.into() },
			&[input(10, key_id1), input(12, key_id2), output(20, key_id3)],
			&keychain,
			&builder,
		)
		.unwrap();

		tx.validate(Weighting::AsTransaction).unwrap();
	}

	#[test]
	fn blind_simpler_tx() {
		global::set_local_chain_type(global::ChainTypes::AutomatedTesting);
		let keychain = ExtKeychain::from_random_seed(false).unwrap();
		let builder = ProofBuilder::new(&keychain);
		let key_id1 = ExtKeychainPath::new(1, 1, 0, 0, 0).to_identifier();
		let key_id2 = ExtKeychainPath::new(1, 2, 0, 0, 0).to_identifier();

		let tx = transaction(
			KernelFeatures::Plain { fee: 4.into() },
			&[input(6, key_id1), output(2, key_id2)],
			&keychain,
			&builder,
		)
		.unwrap();

		tx.validate(Weighting::AsTransaction).unwrap();
	}
}