1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
//! A simple enumeration for 90 degree rotations

use core::iter;
use core::ops::{Add, AddAssign, Mul, Neg, Sub, SubAssign};

// Implementation note: the order here is intended to be the same as the
// order of `Direction`, to assist the compiler when combining them.
/// The 4 cardinal rotations: [`None`] (no rotation), [`Flip`],
/// [`Clockwise`], and [`Anticlockwise`]. These rotations support basic
/// arithmetic operations with themselves (sums, multiplication by a factor,
/// etc) and can be applied to [`Direction`][crate::direction::Direction]
/// and [`Vector`][crate::vector::Vector].
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum Rotation {
    /// No rotation (0°)
    None = 0,

    /// Rotate 90° clockwise
    Clockwise = 1,

    /// Rotate 180°
    Flip = 2,

    /// Rotate 90° anticlockwise
    Anticlockwise = 3,
}

pub use Rotation::{Anticlockwise, Clockwise};
use Rotation::{Flip, None};

impl Rotation {
    /// This function helps us compose [`Rotation`] sums, because a rotation can
    /// always be represented as a sum of int values % 4
    #[inline(always)]
    #[must_use]
    fn as_int(self) -> i8 {
        self as i8
    }

    /// Counterpart to as_int. 0 is [`Rotation::None`], then counts clockwise. Panics if
    /// the input isn't in 0..4, but we assume that with inlining this will
    /// usually be optimized away.
    #[inline(always)]
    #[must_use]
    fn from_int(value: i8) -> Self {
        match value {
            0 => None,
            1 => Clockwise,
            2 => Flip,
            3 => Anticlockwise,
            value => panic!("Invalid numerical direction value: {}", value),
        }
    }

    /// Check if a rotation is a turn; that is, if it is [`Clockwise`] or
    /// [`Anticlockwise`]
    ///
    /// # Example
    ///
    /// ```
    /// use gridly::rotation::*;
    ///
    /// assert!(!Rotation::None.is_turn());
    /// assert!(!Rotation::Flip.is_turn());
    /// assert!(Clockwise.is_turn());
    /// assert!(Anticlockwise.is_turn());
    /// ```
    #[inline]
    #[must_use]
    pub fn is_turn(self) -> bool {
        match self {
            Clockwise | Anticlockwise => true,
            None | Flip => false,
        }
    }

    /// Get the rotation in the opposite direction. Note that [`Rotation::None`] and
    /// [`Rotation::Flip`] are their own opposites.
    ///
    /// # Example
    ///
    /// ```
    /// use gridly::rotation::*;
    ///
    /// assert_eq!(Rotation::None.reverse(), Rotation::None);
    /// assert_eq!(Rotation::Flip.reverse(), Rotation::Flip);
    /// assert_eq!(Clockwise.reverse(), Anticlockwise);
    /// assert_eq!(Anticlockwise.reverse(), Clockwise);
    /// ```
    #[inline]
    #[must_use]
    pub fn reverse(self) -> Self {
        match self {
            Clockwise => Anticlockwise,
            Anticlockwise => Clockwise,
            straight => straight,
        }
    }
}

impl Add for Rotation {
    type Output = Rotation;

    #[inline]
    #[must_use]
    fn add(self, rhs: Rotation) -> Rotation {
        Self::from_int((self.as_int() + rhs.as_int()).rem_euclid(4))
    }
}

#[test]
fn test_add() {
    assert_eq!(
        Clockwise + Clockwise + Anticlockwise + Flip + None + Clockwise + Anticlockwise,
        Anticlockwise
    );
}

impl AddAssign for Rotation {
    #[inline]
    fn add_assign(&mut self, rhs: Rotation) {
        *self = *self + rhs;
    }
}

#[test]
fn test_add_assign() {
    let mut rot = Clockwise;
    rot += Flip;
    rot += None;
    assert_eq!(rot, Anticlockwise);
}

impl Sub for Rotation {
    type Output = Rotation;

    #[inline]
    #[must_use]
    fn sub(self, rhs: Rotation) -> Rotation {
        Self::from_int((self.as_int() - rhs.as_int()).rem_euclid(4))
    }
}

#[test]
fn test_sub() {
    assert_eq!(Anticlockwise - Clockwise, Flip);
    assert_eq!(Flip - None, Flip);
    assert_eq!(Clockwise - Flip, Anticlockwise);
}

impl SubAssign for Rotation {
    #[inline]
    fn sub_assign(&mut self, rhs: Rotation) {
        *self = *self - rhs;
    }
}

#[test]
fn test_sub_assign() {
    let mut rot = Anticlockwise;

    rot -= Flip;
    rot -= Anticlockwise;

    assert_eq!(rot, Flip);
}

/// Macro is the easiest way to overload this for integers
macro_rules! is_even {
    ($value:expr) => {
        $value & 1 == 0
    };
}

macro_rules! impl_mul {
    ($($int:ident)*) => {$(
        impl Mul<$int> for Rotation {
            type Output = Rotation;

            #[inline]
            #[must_use]
            fn mul(self, rhs: $int) -> Rotation {
                match self {
                    None => None,
                    Flip if is_even!(rhs) => None,
                    Flip => Flip,
                    Clockwise => Self::from_int(rhs.rem_euclid(4) as i8),
                    Anticlockwise => Self::from_int((-(rhs.rem_euclid(4) as i8)).rem_euclid(4)),
                }
            }
        }
    )*}
}

impl_mul! {
    u8 u16 u32 u64 usize
    i8 i16 i32 i64 isize
}

#[cfg(test)]
mod test_mul {
    use crate::rotation::Rotation;
    use Rotation::*;

    #[test]
    fn none() {
        assert_eq!(None * 0, None);
        assert_eq!(None * 1, None);
        assert_eq!(None * 2, None);
        assert_eq!(None * 3, None);

        assert_eq!(None * 4, None);
        assert_eq!(None * 5, None);
        assert_eq!(None * 6, None);
        assert_eq!(None * 7, None);

        assert_eq!(None * -1, None);
        assert_eq!(None * -2, None);
        assert_eq!(None * -3, None);
        assert_eq!(None * -4, None);

        assert_eq!(None * -5, None);
        assert_eq!(None * -6, None);
        assert_eq!(None * -7, None);
        assert_eq!(None * -8, None);
    }

    #[test]
    fn flip() {
        assert_eq!(Flip * 0, None);
        assert_eq!(Flip * 1, Flip);
        assert_eq!(Flip * 2, None);
        assert_eq!(Flip * 3, Flip);

        assert_eq!(Flip * 4, None);
        assert_eq!(Flip * 5, Flip);
        assert_eq!(Flip * 6, None);
        assert_eq!(Flip * 7, Flip);

        assert_eq!(Flip * -1, Flip);
        assert_eq!(Flip * -2, None);
        assert_eq!(Flip * -3, Flip);
        assert_eq!(Flip * -4, None);

        assert_eq!(Flip * -5, Flip);
        assert_eq!(Flip * -6, None);
        assert_eq!(Flip * -7, Flip);
        assert_eq!(Flip * -8, None);
    }

    #[test]
    fn clockwise() {
        assert_eq!(Clockwise * 0, None);
        assert_eq!(Clockwise * 1, Clockwise);
        assert_eq!(Clockwise * 2, Flip);
        assert_eq!(Clockwise * 3, Anticlockwise);

        assert_eq!(Clockwise * 4, None);
        assert_eq!(Clockwise * 5, Clockwise);
        assert_eq!(Clockwise * 6, Flip);
        assert_eq!(Clockwise * 7, Anticlockwise);

        assert_eq!(Clockwise * -1, Anticlockwise);
        assert_eq!(Clockwise * -2, Flip);
        assert_eq!(Clockwise * -3, Clockwise);
        assert_eq!(Clockwise * -4, None);

        assert_eq!(Clockwise * -5, Anticlockwise);
        assert_eq!(Clockwise * -6, Flip);
        assert_eq!(Clockwise * -7, Clockwise);
        assert_eq!(Clockwise * -8, None);
    }

    #[test]
    fn anticlockwise() {
        assert_eq!(Anticlockwise * 0, None);
        assert_eq!(Anticlockwise * 1, Anticlockwise);
        assert_eq!(Anticlockwise * 2, Flip);
        assert_eq!(Anticlockwise * 3, Clockwise);

        assert_eq!(Anticlockwise * 4, None);
        assert_eq!(Anticlockwise * 5, Anticlockwise);
        assert_eq!(Anticlockwise * 6, Flip);
        assert_eq!(Anticlockwise * 7, Clockwise);

        assert_eq!(Anticlockwise * -1, Clockwise);
        assert_eq!(Anticlockwise * -2, Flip);
        assert_eq!(Anticlockwise * -3, Anticlockwise);
        assert_eq!(Anticlockwise * -4, None);

        assert_eq!(Anticlockwise * -5, Clockwise);
        assert_eq!(Anticlockwise * -6, Flip);
        assert_eq!(Anticlockwise * -7, Anticlockwise);
        assert_eq!(Anticlockwise * -8, None);
    }
}

impl iter::Sum<Rotation> for Rotation {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        Self::from_int(iter.fold(0, |acc, rot| (acc + rot.as_int()).rem_euclid(4)))
    }
}

#[test]
fn test_sum() {
    // sum should be clockwise
    let clocks = iter::repeat(Clockwise).take(21);

    // sum should be clockwise
    let anticlocks = iter::repeat(Anticlockwise).take(43);

    // sum should be none
    let nones = iter::repeat(None).take(1000);

    // sum should be none
    let flips = iter::repeat(Flip).take(2000);

    let all = clocks.chain(anticlocks).chain(nones).chain(flips);
    let sum: Rotation = all.sum();

    assert_eq!(sum, Flip);
}

impl<'a> iter::Sum<&'a Rotation> for Rotation {
    #[inline]
    fn sum<I: Iterator<Item = &'a Rotation>>(iter: I) -> Rotation {
        iter.copied().sum()
    }
}

impl Neg for Rotation {
    type Output = Rotation;

    #[inline]
    #[must_use]
    fn neg(self) -> Self {
        self.reverse()
    }
}

#[test]
fn test_neg() {
    assert_eq!(-Flip, Flip);
    assert_eq!(-None, None);
    assert_eq!(-Clockwise, Anticlockwise);
    assert_eq!(-Anticlockwise, Clockwise);
}