1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// ------------------------------------------------------------------------------
// Copyright 2018 Uwe Arzt, mail@uwe-arzt.de
// SPDX-License-Identifier: Apache-2.0
// ------------------------------------------------------------------------------

//! Driver for Panasonic AMG88(33)

#![no_std]

use embedded_hal as hal;
use libm;

use bit_field::BitField;

use crate::hal::blocking::delay::DelayMs;
use crate::hal::blocking::i2c::{Read, Write, WriteRead};

/// Errors
#[derive(Debug)]
pub enum Error<E> {
    /// I2C bus error
    I2c(E),
}
/// I²C address
#[derive(Copy, Clone)]
pub enum Address {
    Standard = 0x69,
    Alternate = 0x68,
}

#[allow(dead_code)]
#[derive(Copy, Clone)]
enum Register {
    PowerControl = 0x00,
    Reset = 0x01,
    Framerate = 0x02,
    IntControl = 0x03,
    Status = 0x04,
    StatusClear = 0x05,
    Average = 0x07,
    IntLevelUpperLsb = 0x08,
    IntLevelUpperMsb = 0x09,
    IntLevelLowerLsb = 0x0A,
    IntLevelLowerMsb = 0x0B,
    IntLevelHystLsb = 0x0C,
    IntLevelHystMsb = 0x0D,
    ThermistorLsb = 0x0E,
    ThermistorMsb = 0x0F,
    IntTableInt0 = 0x10,
    ReservedAverage = 0x1F,
    TemperatureStart = 0x80,
}

#[derive(Copy, Clone)]
pub enum Power {
    Wakeup = 0x00,
    Sleep = 0x10,
    Standby60Seconds = 0x20,
    Standby10Seconds = 0x21,
}

#[derive(Copy, Clone)]
pub enum Framerate {
    Fps10 = 0x00,
    Fps1 = 0x01,
}

#[allow(dead_code)]
pub struct GridEye<I2C, D> {
    i2c: I2C,
    delay: D,
    address: Address,
}

impl<I2C, D, E> GridEye<I2C, D>
where
    I2C: Read<Error = E> + Write<Error = E> + WriteRead<Error = E>,
    D: DelayMs<u8>,
{
    /// Creates a new driver
    pub fn new(i2c: I2C, delay: D, address: Address) -> Self {
        GridEye {
            i2c,
            delay,
            address,
        }
    }

    // ---- Sensor array ---------------------------------------------------------------------------
    /// Get pixel value for pixel 0-63 as raw value
    pub fn get_pixel_temperature_raw(&mut self, pixel: u8) -> Result<u16, Error<E>> {
        let pixel_low = Register::TemperatureStart as u8 + (2 * pixel);
        self.get_register_as_u16(pixel_low)
    }

    /// Get pixel value for pixel 0-63 as celsius
    pub fn get_pixel_temperature_celsius(&mut self, pixel: u8) -> Result<f32, Error<E>> {
        let temperature = self.get_pixel_temperature_raw(pixel)?;
        Ok(temperature_u12_to_f32_celsius(temperature, 0.25))
    }

    // ---- Device temperature ---------------------------------------------------------------------
    pub fn get_device_temperature_raw(&mut self) -> Result<u16, Error<E>> {
        self.get_register_as_u16(Register::ThermistorLsb as u8)
    }

    pub fn get_device_temperature_celsius(&mut self) -> Result<f32, Error<E>> {
        let temperature = self.get_device_temperature_raw()?;
        Ok(temperature_u12_to_f32_celsius(temperature, 0.0625))
    }

    // ---- framerate ------------------------------------------------------------------------------
    pub fn set_framerate(&mut self, framerate: Framerate) -> Result<(), Error<E>> {
        self.set_register(Register::Framerate, framerate as u8)
    }
    pub fn get_framerate(&mut self) -> Result<(Framerate), Error<E>> {
        let fps = self.get_register(Register::Framerate as u8)?;
        if fps == 0 {
            Ok(Framerate::Fps10)
        } else {
            Ok(Framerate::Fps1)
        }
    }

    // ---- other ----------------------------------------------------------------------------------
    pub fn power(&mut self, power: Power) -> Result<(), Error<E>> {
        self.set_register(Register::PowerControl, power as u8)
    }

    // ---- interrupt ------------------------------------------------------------------------------
    pub fn enable_interrupt(&mut self) -> Result<(), Error<E>> {
        let mut icr = self.get_register(Register::IntControl as u8)?;
        self.set_register(Register::IntControl, *icr.set_bit(0, true))?;
        Ok(())
    }
    pub fn disable_interrupt(&mut self) -> Result<(), Error<E>> {
        let mut icr = self.get_register(Register::IntControl as u8)?;
        self.set_register(Register::IntControl, *icr.set_bit(0, false))?;
        Ok(())
    }
    pub fn interrupt_enabled(&mut self) -> Result<bool, Error<E>> {
        let icr = self.get_register(Register::IntControl as u8)?;
        Ok(icr.get_bit(1))
    }
    pub fn interrupt_mode_absolut(&mut self) -> Result<(), Error<E>> {
        let mut icr = self.get_register(Register::IntControl as u8)?;
        self.set_register(Register::IntControl, *icr.set_bit(1, true))?;
        Ok(())
    }
    pub fn interrupt_mode_difference(&mut self) -> Result<(), Error<E>> {
        let mut icr = self.get_register(Register::IntControl as u8)?;
        self.set_register(Register::IntControl, *icr.set_bit(1, true))?;
        Ok(())
    }

    // ---- status ---------------------------------------------------------------------------------
    pub fn interrupt_flag_set(&mut self) -> Result<bool, Error<E>> {
        let status = self.get_register(Register::IntControl as u8)?;
        Ok(status.get_bit(1))
    }
    pub fn pixel_temperature_out_ok(&mut self) -> Result<bool, Error<E>> {
        let status = self.get_register(Register::IntControl as u8)?;
        Ok(status.get_bit(2))
    }
    pub fn device_temperature_out_ok(&mut self) -> Result<bool, Error<E>> {
        let status = self.get_register(Register::IntControl as u8)?;
        Ok(status.get_bit(3))
    }
    pub fn clear_interrupt_flag(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::StatusClear, 0x02)?;
        Ok(())
    }
    pub fn clear_pixel_temperatur_overflow(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::StatusClear, 0x04)?;
        Ok(())
    }
    pub fn clear_device_temperature_overflow(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::StatusClear, 0x08)?;
        Ok(())
    }
    pub fn clear_all_overflow(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::StatusClear, 0x0c)?;
        Ok(())
    }
    pub fn clear_all_status(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::StatusClear, 0x0e)?;
        Ok(())
    }

    // ---- pixel interrupt ------------------------------------------------------------------------
    pub fn pixel_interrupt_enabled(&mut self, pixel: u8) -> Result<bool, Error<E>> {
        let intreg = (Register::IntTableInt0 as u8) + (pixel / 8);
        let pos = pixel % 8;

        let inttable = self.get_register(intreg)?;
        Ok(inttable.get_bit(pos as usize))
    }

    // ----  average -------------------------------------------------------------------------------
    pub fn enable_moving_average(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::ReservedAverage, 0x50)?;
        self.set_register(Register::ReservedAverage, 0x45)?;
        self.set_register(Register::ReservedAverage, 0x57)?;
        self.set_register(Register::Average, 0x20)?;
        self.set_register(Register::ReservedAverage, 0x00)?;
        Ok(())
    }

    pub fn disable_moving_average(&mut self) -> Result<(), Error<E>> {
        self.set_register(Register::ReservedAverage, 0x50)?;
        self.set_register(Register::ReservedAverage, 0x45)?;
        self.set_register(Register::ReservedAverage, 0x57)?;
        self.set_register(Register::Average, 0x00)?;
        self.set_register(Register::ReservedAverage, 0x00)?;
        Ok(())
    }

    pub fn moving_average_enabled(&mut self) -> Result<bool, Error<E>> {
        let avg = self.get_register(Register::Average as u8)?;
        Ok(avg.get_bit(5))
    }

    // ---- interrupt value ------------------------------------------------------------------------
    pub fn set_upper_int_value_celsius(&mut self, celsius: f32) -> Result<(), Error<E>> {
        self.set_upper_int_value_raw(temperature_f32_to_u16_celsius(celsius))
    }

    pub fn set_upper_int_value_raw(&mut self, value: u16) -> Result<(), Error<E>> {
        let bytes = value.to_le_bytes();
        self.set_register(Register::IntLevelUpperLsb, bytes[0])?;
        self.set_register(Register::IntLevelUpperMsb, bytes[1])?;
        Ok(())
    }

    pub fn set_lower_int_value_celsius(&mut self, celsius: f32) -> Result<(), Error<E>> {
        self.set_lower_int_value_raw(temperature_f32_to_u16_celsius(celsius))
    }

    pub fn set_lower_int_value_raw(&mut self, value: u16) -> Result<(), Error<E>> {
        let bytes = value.to_le_bytes();
        self.set_register(Register::IntLevelLowerLsb, bytes[0])?;
        self.set_register(Register::IntLevelLowerMsb, bytes[1])?;
        Ok(())
    }

    pub fn set_int_hysteresis_celsius(&mut self, celsius: f32) -> Result<(), Error<E>> {
        self.set_int_hysteresis_raw(temperature_f32_to_u16_celsius(celsius))
    }

    pub fn set_int_hysteresis_raw(&mut self, value: u16) -> Result<(), Error<E>> {
        let bytes = value.to_le_bytes();
        self.set_register(Register::IntLevelHystLsb, bytes[0])?;
        self.set_register(Register::IntLevelHystMsb, bytes[1])?;
        Ok(())
    }

    pub fn upper_int_value_celsius(&mut self) -> Result<f32, Error<E>> {
        let temperature = self.upper_int_value_raw()?;
        Ok(temperature_u12_to_f32_celsius(temperature, 0.25))
    }

    pub fn upper_int_value_raw(&mut self) -> Result<u16, Error<E>> {
        let intval = self.get_register_as_u16(Register::IntLevelUpperLsb as u8)?;
        Ok(intval)
    }

    pub fn lower_int_value_celsius(&mut self) -> Result<f32, Error<E>> {
        let temperature = self.lower_int_value_raw()?;
        Ok(temperature_u12_to_f32_celsius(temperature, 0.25))
    }

    pub fn lower_int_value_raw(&mut self) -> Result<u16, Error<E>> {
        let intval = self.get_register_as_u16(Register::IntLevelLowerLsb as u8)?;
        Ok(intval)
    }
 
    pub fn hysteresis_int_value_celsius(&mut self) -> Result<f32, Error<E>> {
        let temperature = self.hysteresis_int_value_raw()?;
        Ok(temperature_u12_to_f32_celsius(temperature, 0.25))
    }

    pub fn hysteresis_int_value_raw(&mut self) -> Result<u16, Error<E>> {
        let intval = self.get_register_as_u16(Register::IntLevelHystLsb as u8)?;
        Ok(intval)
    }

    // ---- internal -------------------------------------------------------------------------------
    fn set_register(&mut self, register: Register, value: u8) -> Result<(), Error<E>> {
        let cmd_bytes = [register as u8, value];
        self.i2c
            .write(self.address as u8, &cmd_bytes)
            .map_err(Error::I2c)
    }

    fn get_register(&mut self, register: u8) -> Result<u8, Error<E>> {
        let cmd = [register];
        self.i2c
            .write(self.address as u8, &cmd)
            .map_err(Error::I2c)?;
        let mut buffer = [0];
        self.i2c
            .read(self.address as u8, &mut buffer)
            .map_err(Error::I2c)?;
        Ok(buffer[0])
    }

    fn get_register_as_u16(&mut self, register: u8) -> Result<u16, Error<E>> {
        let cmd = [register];
        self.i2c
            .write(self.address as u8, &cmd)
            .map_err(Error::I2c)?;
        let mut buffer = [0, 0];
        self.i2c
            .read(self.address as u8, &mut buffer)
            .map_err(Error::I2c)?;
        Ok(((buffer[1] as u16) << 8) + (buffer[0] as u16))
    }
}
// ---- conversion -----------------------------------------------------------------------------
fn temperature_u12_to_f32_celsius(temperature: u16, factor: f32) -> f32 {
    // check if temperature is negative
    if !temperature.get_bit(11) {
        temperature as f32 * factor
    } else {
        let mut bnot = !temperature;
        let temp = *bnot.set_bits(11..16, 0b00000);
        temp as f32 * -factor
    }
}
fn temperature_f32_to_u16_celsius(mut celsius: f32) -> u16 {
       let mut neg = false;
        if celsius < 0.0 {
            celsius = libm::fabsf(celsius);
            neg = true;
        }
        let mut temp = celsius as u16;
        if neg {
            temp = *temp.set_bit(11, true);
        }
        return temp
}