1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
use std::collections::HashMap;

use grep_matcher::{
    Captures, LineMatchKind, LineTerminator, Match, Matcher, NoError, ByteSet,
};
use regex::bytes::{CaptureLocations, Regex};

use config::{Config, ConfiguredHIR};
use crlf::CRLFMatcher;
use error::Error;
use multi::MultiLiteralMatcher;
use word::WordMatcher;

/// A builder for constructing a `Matcher` using regular expressions.
///
/// This builder re-exports many of the same options found on the regex crate's
/// builder, in addition to a few other options such as smart case, word
/// matching and the ability to set a line terminator which may enable certain
/// types of optimizations.
///
/// The syntax supported is documented as part of the regex crate:
/// https://docs.rs/regex/*/regex/#syntax
#[derive(Clone, Debug)]
pub struct RegexMatcherBuilder {
    config: Config,
}

impl Default for RegexMatcherBuilder {
    fn default() -> RegexMatcherBuilder {
        RegexMatcherBuilder::new()
    }
}

impl RegexMatcherBuilder {
    /// Create a new builder for configuring a regex matcher.
    pub fn new() -> RegexMatcherBuilder {
        RegexMatcherBuilder {
            config: Config::default(),
        }
    }

    /// Build a new matcher using the current configuration for the provided
    /// pattern.
    ///
    /// The syntax supported is documented as part of the regex crate:
    /// https://docs.rs/regex/*/regex/#syntax
    pub fn build(&self, pattern: &str) -> Result<RegexMatcher, Error> {
        let chir = self.config.hir(pattern)?;
        let fast_line_regex = chir.fast_line_regex()?;
        let non_matching_bytes = chir.non_matching_bytes();
        if let Some(ref re) = fast_line_regex {
            trace!("extracted fast line regex: {:?}", re);
        }

        let matcher = RegexMatcherImpl::new(&chir)?;
        trace!("final regex: {:?}", matcher.regex());
        Ok(RegexMatcher {
            config: self.config.clone(),
            matcher: matcher,
            fast_line_regex: fast_line_regex,
            non_matching_bytes: non_matching_bytes,
        })
    }

    /// Build a new matcher from a plain alternation of literals.
    ///
    /// Depending on the configuration set by the builder, this may be able to
    /// build a matcher substantially faster than by joining the patterns with
    /// a `|` and calling `build`.
    pub fn build_literals<B: AsRef<str>>(
        &self,
        literals: &[B],
    ) -> Result<RegexMatcher, Error> {
        let slices: Vec<_> = literals.iter().map(|s| s.as_ref()).collect();
        if !self.config.can_plain_aho_corasick() || literals.len() < 40 {
            return self.build(&slices.join("|"));
        }
        let matcher = MultiLiteralMatcher::new(&slices)?;
        let imp = RegexMatcherImpl::MultiLiteral(matcher);
        Ok(RegexMatcher {
            config: self.config.clone(),
            matcher: imp,
            fast_line_regex: None,
            non_matching_bytes: ByteSet::empty(),
        })
    }

    /// Set the value for the case insensitive (`i`) flag.
    ///
    /// When enabled, letters in the pattern will match both upper case and
    /// lower case variants.
    pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.case_insensitive = yes;
        self
    }

    /// Whether to enable "smart case" or not.
    ///
    /// When smart case is enabled, the builder will automatically enable
    /// case insensitive matching based on how the pattern is written. Namely,
    /// case insensitive mode is enabled when both of the following things
    /// are true:
    ///
    /// 1. The pattern contains at least one literal character. For example,
    ///    `a\w` contains a literal (`a`) but `\w` does not.
    /// 2. Of the literals in the pattern, none of them are considered to be
    ///    uppercase according to Unicode. For example, `foo\pL` has no
    ///    uppercase literals but `Foo\pL` does.
    pub fn case_smart(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.case_smart = yes;
        self
    }

    /// Set the value for the multi-line matching (`m`) flag.
    ///
    /// When enabled, `^` matches the beginning of lines and `$` matches the
    /// end of lines.
    ///
    /// By default, they match beginning/end of the input.
    pub fn multi_line(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.multi_line = yes;
        self
    }

    /// Set the value for the any character (`s`) flag, where in `.` matches
    /// anything when `s` is set and matches anything except for new line when
    /// it is not set (the default).
    ///
    /// N.B. "matches anything" means "any byte" when Unicode is disabled and
    /// means "any valid UTF-8 encoding of any Unicode scalar value" when
    /// Unicode is enabled.
    pub fn dot_matches_new_line(
        &mut self,
        yes: bool,
    ) -> &mut RegexMatcherBuilder {
        self.config.dot_matches_new_line = yes;
        self
    }

    /// Set the value for the greedy swap (`U`) flag.
    ///
    /// When enabled, a pattern like `a*` is lazy (tries to find shortest
    /// match) and `a*?` is greedy (tries to find longest match).
    ///
    /// By default, `a*` is greedy and `a*?` is lazy.
    pub fn swap_greed(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.swap_greed = yes;
        self
    }

    /// Set the value for the ignore whitespace (`x`) flag.
    ///
    /// When enabled, whitespace such as new lines and spaces will be ignored
    /// between expressions of the pattern, and `#` can be used to start a
    /// comment until the next new line.
    pub fn ignore_whitespace(
        &mut self,
        yes: bool,
    ) -> &mut RegexMatcherBuilder {
        self.config.ignore_whitespace = yes;
        self
    }

    /// Set the value for the Unicode (`u`) flag.
    ///
    /// Enabled by default. When disabled, character classes such as `\w` only
    /// match ASCII word characters instead of all Unicode word characters.
    pub fn unicode(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.unicode = yes;
        self
    }

    /// Whether to support octal syntax or not.
    ///
    /// Octal syntax is a little-known way of uttering Unicode codepoints in
    /// a regular expression. For example, `a`, `\x61`, `\u0061` and
    /// `\141` are all equivalent regular expressions, where the last example
    /// shows octal syntax.
    ///
    /// While supporting octal syntax isn't in and of itself a problem, it does
    /// make good error messages harder. That is, in PCRE based regex engines,
    /// syntax like `\0` invokes a backreference, which is explicitly
    /// unsupported in Rust's regex engine. However, many users expect it to
    /// be supported. Therefore, when octal support is disabled, the error
    /// message will explicitly mention that backreferences aren't supported.
    ///
    /// Octal syntax is disabled by default.
    pub fn octal(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.octal = yes;
        self
    }

    /// Set the approximate size limit of the compiled regular expression.
    ///
    /// This roughly corresponds to the number of bytes occupied by a single
    /// compiled program. If the program exceeds this number, then a
    /// compilation error is returned.
    pub fn size_limit(&mut self, bytes: usize) -> &mut RegexMatcherBuilder {
        self.config.size_limit = bytes;
        self
    }

    /// Set the approximate size of the cache used by the DFA.
    ///
    /// This roughly corresponds to the number of bytes that the DFA will
    /// use while searching.
    ///
    /// Note that this is a *per thread* limit. There is no way to set a global
    /// limit. In particular, if a regex is used from multiple threads
    /// simultaneously, then each thread may use up to the number of bytes
    /// specified here.
    pub fn dfa_size_limit(
        &mut self,
        bytes: usize,
    ) -> &mut RegexMatcherBuilder {
        self.config.dfa_size_limit = bytes;
        self
    }

    /// Set the nesting limit for this parser.
    ///
    /// The nesting limit controls how deep the abstract syntax tree is allowed
    /// to be. If the AST exceeds the given limit (e.g., with too many nested
    /// groups), then an error is returned by the parser.
    ///
    /// The purpose of this limit is to act as a heuristic to prevent stack
    /// overflow for consumers that do structural induction on an `Ast` using
    /// explicit recursion. While this crate never does this (instead using
    /// constant stack space and moving the call stack to the heap), other
    /// crates may.
    ///
    /// This limit is not checked until the entire Ast is parsed. Therefore,
    /// if callers want to put a limit on the amount of heap space used, then
    /// they should impose a limit on the length, in bytes, of the concrete
    /// pattern string. In particular, this is viable since this parser
    /// implementation will limit itself to heap space proportional to the
    /// lenth of the pattern string.
    ///
    /// Note that a nest limit of `0` will return a nest limit error for most
    /// patterns but not all. For example, a nest limit of `0` permits `a` but
    /// not `ab`, since `ab` requires a concatenation, which results in a nest
    /// depth of `1`. In general, a nest limit is not something that manifests
    /// in an obvious way in the concrete syntax, therefore, it should not be
    /// used in a granular way.
    pub fn nest_limit(&mut self, limit: u32) -> &mut RegexMatcherBuilder {
        self.config.nest_limit = limit;
        self
    }

    /// Set an ASCII line terminator for the matcher.
    ///
    /// The purpose of setting a line terminator is to enable a certain class
    /// of optimizations that can make line oriented searching faster. Namely,
    /// when a line terminator is enabled, then the builder will guarantee that
    /// the resulting matcher will never be capable of producing a match that
    /// contains the line terminator. Because of this guarantee, users of the
    /// resulting matcher do not need to slowly execute a search line by line
    /// for line oriented search.
    ///
    /// If the aforementioned guarantee about not matching a line terminator
    /// cannot be made because of how the pattern was written, then the builder
    /// will return an error when attempting to construct the matcher. For
    /// example, the pattern `a\sb` will be transformed such that it can never
    /// match `a\nb` (when `\n` is the line terminator), but the pattern `a\nb`
    /// will result in an error since the `\n` cannot be easily removed without
    /// changing the fundamental intent of the pattern.
    ///
    /// If the given line terminator isn't an ASCII byte (`<=127`), then the
    /// builder will return an error when constructing the matcher.
    pub fn line_terminator(
        &mut self,
        line_term: Option<u8>,
    ) -> &mut RegexMatcherBuilder {
        self.config.line_terminator = line_term.map(LineTerminator::byte);
        self
    }

    /// Set the line terminator to `\r\n` and enable CRLF matching for `$` in
    /// regex patterns.
    ///
    /// This method sets two distinct settings:
    ///
    /// 1. It causes the line terminator for the matcher to be `\r\n`. Namely,
    ///    this prevents the matcher from ever producing a match that contains
    ///    a `\r` or `\n`.
    /// 2. It translates all instances of `$` in the pattern to `(?:\r??$)`.
    ///    This works around the fact that the regex engine does not support
    ///    matching CRLF as a line terminator when using `$`.
    ///
    /// In particular, because of (2), the matches produced by the matcher may
    /// be slightly different than what one would expect given the pattern.
    /// This is the trade off made: in many cases, `$` will "just work" in the
    /// presence of `\r\n` line terminators, but matches may require some
    /// trimming to faithfully represent the intended match.
    ///
    /// Note that if you do not wish to set the line terminator but would still
    /// like `$` to match `\r\n` line terminators, then it is valid to call
    /// `crlf(true)` followed by `line_terminator(None)`. Ordering is
    /// important, since `crlf` and `line_terminator` override each other.
    pub fn crlf(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        if yes {
            self.config.line_terminator = Some(LineTerminator::crlf());
        } else {
            self.config.line_terminator = None;
        }
        self.config.crlf = yes;
        self
    }

    /// Require that all matches occur on word boundaries.
    ///
    /// Enabling this option is subtly different than putting `\b` assertions
    /// on both sides of your pattern. In particular, a `\b` assertion requires
    /// that one side of it match a word character while the other match a
    /// non-word character. This option, in contrast, merely requires that
    /// one side match a non-word character.
    ///
    /// For example, `\b-2\b` will not match `foo -2 bar` since `-` is not a
    /// word character. However, `-2` with this `word` option enabled will
    /// match the `-2` in `foo -2 bar`.
    pub fn word(&mut self, yes: bool) -> &mut RegexMatcherBuilder {
        self.config.word = yes;
        self
    }
}

/// An implementation of the `Matcher` trait using Rust's standard regex
/// library.
#[derive(Clone, Debug)]
pub struct RegexMatcher {
    /// The configuration specified by the caller.
    config: Config,
    /// The underlying matcher implementation.
    matcher: RegexMatcherImpl,
    /// A regex that never reports false negatives but may report false
    /// positives that is believed to be capable of being matched more quickly
    /// than `regex`. Typically, this is a single literal or an alternation
    /// of literals.
    fast_line_regex: Option<Regex>,
    /// A set of bytes that will never appear in a match.
    non_matching_bytes: ByteSet,
}

impl RegexMatcher {
    /// Create a new matcher from the given pattern using the default
    /// configuration.
    pub fn new(pattern: &str) -> Result<RegexMatcher, Error> {
        RegexMatcherBuilder::new().build(pattern)
    }

    /// Create a new matcher from the given pattern using the default
    /// configuration, but matches lines terminated by `\n`.
    ///
    /// This is meant to be a convenience constructor for using a
    /// `RegexMatcherBuilder` and setting its
    /// [`line_terminator`](struct.RegexMatcherBuilder.html#method.line_terminator)
    /// to `\n`. The purpose of using this constructor is to permit special
    /// optimizations that help speed up line oriented search. These types of
    /// optimizations are only appropriate when matches span no more than one
    /// line. For this reason, this constructor will return an error if the
    /// given pattern contains a literal `\n`. Other uses of `\n` (such as in
    /// `\s`) are removed transparently.
    pub fn new_line_matcher(pattern: &str) -> Result<RegexMatcher, Error> {
        RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(pattern)
    }
}

/// An encapsulation of the type of matcher we use in `RegexMatcher`.
#[derive(Clone, Debug)]
enum RegexMatcherImpl {
    /// The standard matcher used for all regular expressions.
    Standard(StandardMatcher),
    /// A matcher for an alternation of plain literals.
    MultiLiteral(MultiLiteralMatcher),
    /// A matcher that strips `\r` from the end of matches.
    ///
    /// This is only used when the CRLF hack is enabled and the regex is line
    /// anchored at the end.
    CRLF(CRLFMatcher),
    /// A matcher that only matches at word boundaries. This transforms the
    /// regex to `(^|\W)(...)($|\W)` instead of the more intuitive `\b(...)\b`.
    /// Because of this, the WordMatcher provides its own implementation of
    /// `Matcher` to encapsulate its use of capture groups to make them
    /// invisible to the caller.
    Word(WordMatcher),
}

impl RegexMatcherImpl {
    /// Based on the configuration, create a new implementation of the
    /// `Matcher` trait.
    fn new(expr: &ConfiguredHIR) -> Result<RegexMatcherImpl, Error> {
        if expr.config().word {
            Ok(RegexMatcherImpl::Word(WordMatcher::new(expr)?))
        } else if expr.needs_crlf_stripped() {
            Ok(RegexMatcherImpl::CRLF(CRLFMatcher::new(expr)?))
        } else {
            if let Some(lits) = expr.alternation_literals() {
                if lits.len() >= 40 {
                    let matcher = MultiLiteralMatcher::new(&lits)?;
                    return Ok(RegexMatcherImpl::MultiLiteral(matcher));
                }
            }
            Ok(RegexMatcherImpl::Standard(StandardMatcher::new(expr)?))
        }
    }

    /// Return the underlying regex object used.
    fn regex(&self) -> String {
        match *self {
            RegexMatcherImpl::Word(ref x) => x.regex().to_string(),
            RegexMatcherImpl::CRLF(ref x) => x.regex().to_string(),
            RegexMatcherImpl::MultiLiteral(_) => "<N/A>".to_string(),
            RegexMatcherImpl::Standard(ref x) => x.regex.to_string(),
        }
    }
}

// This implementation just dispatches on the internal matcher impl except
// for the line terminator optimization, which is possibly executed via
// `fast_line_regex`.
impl Matcher for RegexMatcher {
    type Captures = RegexCaptures;
    type Error = NoError;

    fn find_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<Match>, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.find_at(haystack, at),
            MultiLiteral(ref m) => m.find_at(haystack, at),
            CRLF(ref m) => m.find_at(haystack, at),
            Word(ref m) => m.find_at(haystack, at),
        }
    }

    fn new_captures(&self) -> Result<RegexCaptures, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.new_captures(),
            MultiLiteral(ref m) => m.new_captures(),
            CRLF(ref m) => m.new_captures(),
            Word(ref m) => m.new_captures(),
        }
    }

    fn capture_count(&self) -> usize {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.capture_count(),
            MultiLiteral(ref m) => m.capture_count(),
            CRLF(ref m) => m.capture_count(),
            Word(ref m) => m.capture_count(),
        }
    }

    fn capture_index(&self, name: &str) -> Option<usize> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.capture_index(name),
            MultiLiteral(ref m) => m.capture_index(name),
            CRLF(ref m) => m.capture_index(name),
            Word(ref m) => m.capture_index(name),
        }
    }

    fn find(&self, haystack: &[u8]) -> Result<Option<Match>, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.find(haystack),
            MultiLiteral(ref m) => m.find(haystack),
            CRLF(ref m) => m.find(haystack),
            Word(ref m) => m.find(haystack),
        }
    }

    fn find_iter<F>(
        &self,
        haystack: &[u8],
        matched: F,
    ) -> Result<(), NoError>
    where F: FnMut(Match) -> bool
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.find_iter(haystack, matched),
            MultiLiteral(ref m) => m.find_iter(haystack, matched),
            CRLF(ref m) => m.find_iter(haystack, matched),
            Word(ref m) => m.find_iter(haystack, matched),
        }
    }

    fn try_find_iter<F, E>(
        &self,
        haystack: &[u8],
        matched: F,
    ) -> Result<Result<(), E>, NoError>
    where F: FnMut(Match) -> Result<bool, E>
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.try_find_iter(haystack, matched),
            MultiLiteral(ref m) => m.try_find_iter(haystack, matched),
            CRLF(ref m) => m.try_find_iter(haystack, matched),
            Word(ref m) => m.try_find_iter(haystack, matched),
        }
    }

    fn captures(
        &self,
        haystack: &[u8],
        caps: &mut RegexCaptures,
    ) -> Result<bool, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.captures(haystack, caps),
            MultiLiteral(ref m) => m.captures(haystack, caps),
            CRLF(ref m) => m.captures(haystack, caps),
            Word(ref m) => m.captures(haystack, caps),
        }
    }

    fn captures_iter<F>(
        &self,
        haystack: &[u8],
        caps: &mut RegexCaptures,
        matched: F,
    ) -> Result<(), NoError>
    where F: FnMut(&RegexCaptures) -> bool
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.captures_iter(haystack, caps, matched),
            MultiLiteral(ref m) => m.captures_iter(haystack, caps, matched),
            CRLF(ref m) => m.captures_iter(haystack, caps, matched),
            Word(ref m) => m.captures_iter(haystack, caps, matched),
        }
    }

    fn try_captures_iter<F, E>(
        &self,
        haystack: &[u8],
        caps: &mut RegexCaptures,
        matched: F,
    ) -> Result<Result<(), E>, NoError>
    where F: FnMut(&RegexCaptures) -> Result<bool, E>
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.try_captures_iter(haystack, caps, matched),
            MultiLiteral(ref m) => {
                m.try_captures_iter(haystack, caps, matched)
            }
            CRLF(ref m) => m.try_captures_iter(haystack, caps, matched),
            Word(ref m) => m.try_captures_iter(haystack, caps, matched),
        }
    }

    fn captures_at(
        &self,
        haystack: &[u8],
        at: usize,
        caps: &mut RegexCaptures,
    ) -> Result<bool, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.captures_at(haystack, at, caps),
            MultiLiteral(ref m) => m.captures_at(haystack, at, caps),
            CRLF(ref m) => m.captures_at(haystack, at, caps),
            Word(ref m) => m.captures_at(haystack, at, caps),
        }
    }

    fn replace<F>(
        &self,
        haystack: &[u8],
        dst: &mut Vec<u8>,
        append: F,
    ) -> Result<(), NoError>
    where F: FnMut(Match, &mut Vec<u8>) -> bool
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.replace(haystack, dst, append),
            MultiLiteral(ref m) => m.replace(haystack, dst, append),
            CRLF(ref m) => m.replace(haystack, dst, append),
            Word(ref m) => m.replace(haystack, dst, append),
        }
    }

    fn replace_with_captures<F>(
        &self,
        haystack: &[u8],
        caps: &mut RegexCaptures,
        dst: &mut Vec<u8>,
        append: F,
    ) -> Result<(), NoError>
    where F: FnMut(&Self::Captures, &mut Vec<u8>) -> bool
    {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => {
                m.replace_with_captures(haystack, caps, dst, append)
            }
            MultiLiteral(ref m) => {
                m.replace_with_captures(haystack, caps, dst, append)
            }
            CRLF(ref m) => {
                m.replace_with_captures(haystack, caps, dst, append)
            }
            Word(ref m) => {
                m.replace_with_captures(haystack, caps, dst, append)
            }
        }
    }

    fn is_match(&self, haystack: &[u8]) -> Result<bool, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.is_match(haystack),
            MultiLiteral(ref m) => m.is_match(haystack),
            CRLF(ref m) => m.is_match(haystack),
            Word(ref m) => m.is_match(haystack),
        }
    }

    fn is_match_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<bool, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.is_match_at(haystack, at),
            MultiLiteral(ref m) => m.is_match_at(haystack, at),
            CRLF(ref m) => m.is_match_at(haystack, at),
            Word(ref m) => m.is_match_at(haystack, at),
        }
    }

    fn shortest_match(
        &self,
        haystack: &[u8],
    ) -> Result<Option<usize>, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.shortest_match(haystack),
            MultiLiteral(ref m) => m.shortest_match(haystack),
            CRLF(ref m) => m.shortest_match(haystack),
            Word(ref m) => m.shortest_match(haystack),
        }
    }

    fn shortest_match_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<usize>, NoError> {
        use self::RegexMatcherImpl::*;
        match self.matcher {
            Standard(ref m) => m.shortest_match_at(haystack, at),
            MultiLiteral(ref m) => m.shortest_match_at(haystack, at),
            CRLF(ref m) => m.shortest_match_at(haystack, at),
            Word(ref m) => m.shortest_match_at(haystack, at),
        }
    }

    fn non_matching_bytes(&self) -> Option<&ByteSet> {
        Some(&self.non_matching_bytes)
    }

    fn line_terminator(&self) -> Option<LineTerminator> {
        self.config.line_terminator
    }

    fn find_candidate_line(
        &self,
        haystack: &[u8],
    ) -> Result<Option<LineMatchKind>, NoError> {
        Ok(match self.fast_line_regex {
            Some(ref regex) => {
                regex.shortest_match(haystack).map(LineMatchKind::Candidate)
            }
            None => {
                self.shortest_match(haystack)?.map(LineMatchKind::Confirmed)
            }
        })
    }
}

/// The implementation of the standard regex matcher.
#[derive(Clone, Debug)]
struct StandardMatcher {
    /// The regular expression compiled from the pattern provided by the
    /// caller.
    regex: Regex,
    /// A map from capture group name to its corresponding index.
    names: HashMap<String, usize>,
}

impl StandardMatcher {
    fn new(expr: &ConfiguredHIR) -> Result<StandardMatcher, Error> {
        let regex = expr.regex()?;
        let mut names = HashMap::new();
        for (i, optional_name) in regex.capture_names().enumerate() {
            if let Some(name) = optional_name {
                names.insert(name.to_string(), i);
            }
        }
        Ok(StandardMatcher { regex, names })
    }
}

impl Matcher for StandardMatcher {
    type Captures = RegexCaptures;
    type Error = NoError;

    fn find_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<Match>, NoError> {
        Ok(self.regex
            .find_at(haystack, at)
            .map(|m| Match::new(m.start(), m.end())))
    }

    fn new_captures(&self) -> Result<RegexCaptures, NoError> {
        Ok(RegexCaptures::new(self.regex.capture_locations()))
    }

    fn capture_count(&self) -> usize {
        self.regex.captures_len()
    }

    fn capture_index(&self, name: &str) -> Option<usize> {
        self.names.get(name).map(|i| *i)
    }

    fn try_find_iter<F, E>(
        &self,
        haystack: &[u8],
        mut matched: F,
    ) -> Result<Result<(), E>, NoError>
    where F: FnMut(Match) -> Result<bool, E>
    {
        for m in self.regex.find_iter(haystack) {
            match matched(Match::new(m.start(), m.end())) {
                Ok(true) => continue,
                Ok(false) => return Ok(Ok(())),
                Err(err) => return Ok(Err(err)),
            }
        }
        Ok(Ok(()))
    }

    fn captures_at(
        &self,
        haystack: &[u8],
        at: usize,
        caps: &mut RegexCaptures,
    ) -> Result<bool, NoError> {
        Ok(self.regex.captures_read_at(
                &mut caps.locations_mut(), haystack, at,
        ).is_some())
    }

    fn shortest_match_at(
        &self,
        haystack: &[u8],
        at: usize,
    ) -> Result<Option<usize>, NoError> {
        Ok(self.regex.shortest_match_at(haystack, at))
    }
}

/// Represents the match offsets of each capturing group in a match.
///
/// The first, or `0`th capture group, always corresponds to the entire match
/// and is guaranteed to be present when a match occurs. The next capture
/// group, at index `1`, corresponds to the first capturing group in the regex,
/// ordered by the position at which the left opening parenthesis occurs.
///
/// Note that not all capturing groups are guaranteed to be present in a match.
/// For example, in the regex, `(?P<foo>\w)|(?P<bar>\W)`, only one of `foo`
/// or `bar` will ever be set in any given match.
///
/// In order to access a capture group by name, you'll need to first find the
/// index of the group using the corresponding matcher's `capture_index`
/// method, and then use that index with `RegexCaptures::get`.
#[derive(Clone, Debug)]
pub struct RegexCaptures(RegexCapturesImp);

#[derive(Clone, Debug)]
enum RegexCapturesImp {
    AhoCorasick {
        /// The start and end of the match, corresponding to capture group 0.
        mat: Option<Match>,
    },
    Regex {
        /// Where the locations are stored.
        locs: CaptureLocations,
        /// These captures behave as if the capturing groups begin at the given
        /// offset. When set to `0`, this has no affect and capture groups are
        /// indexed like normal.
        ///
        /// This is useful when building matchers that wrap arbitrary regular
        /// expressions. For example, `WordMatcher` takes an existing regex
        /// `re` and creates `(?:^|\W)(re)(?:$|\W)`, but hides the fact that
        /// the regex has been wrapped from the caller. In order to do this,
        /// the matcher and the capturing groups must behave as if `(re)` is
        /// the `0`th capture group.
        offset: usize,
        /// When enable, the end of a match has `\r` stripped from it, if one
        /// exists.
        strip_crlf: bool,
    },
}

impl Captures for RegexCaptures {
    fn len(&self) -> usize {
        match self.0 {
            RegexCapturesImp::AhoCorasick { .. } => 1,
            RegexCapturesImp::Regex { ref locs, offset, .. } => {
                locs.len().checked_sub(offset).unwrap()
            }
        }
    }

    fn get(&self, i: usize) -> Option<Match> {
        match self.0 {
            RegexCapturesImp::AhoCorasick { mat, .. } => {
                if i == 0 {
                    mat
                } else {
                    None
                }
            }
            RegexCapturesImp::Regex { ref locs, offset, strip_crlf } => {
                if !strip_crlf {
                    let actual = i.checked_add(offset).unwrap();
                    return locs.pos(actual).map(|(s, e)| Match::new(s, e));
                }

                // currently don't support capture offsetting with CRLF
                // stripping
                assert_eq!(offset, 0);
                let m = match locs.pos(i).map(|(s, e)| Match::new(s, e)) {
                    None => return None,
                    Some(m) => m,
                };
                // If the end position of this match corresponds to the end
                // position of the overall match, then we apply our CRLF
                // stripping. Otherwise, we cannot assume stripping is correct.
                if i == 0 || m.end() == locs.pos(0).unwrap().1 {
                    Some(m.with_end(m.end() - 1))
                } else {
                    Some(m)
                }
            }
        }
    }
}

impl RegexCaptures {
    pub(crate) fn simple() -> RegexCaptures {
        RegexCaptures(RegexCapturesImp::AhoCorasick { mat: None })
    }

    pub(crate) fn new(locs: CaptureLocations) -> RegexCaptures {
        RegexCaptures::with_offset(locs, 0)
    }

    pub(crate) fn with_offset(
        locs: CaptureLocations,
        offset: usize,
    ) -> RegexCaptures {
        RegexCaptures(RegexCapturesImp::Regex {
            locs, offset, strip_crlf: false,
        })
    }

    pub(crate) fn locations(&self) -> &CaptureLocations {
        match self.0 {
            RegexCapturesImp::AhoCorasick { .. } => {
                panic!("getting locations for simple captures is invalid")
            }
            RegexCapturesImp::Regex { ref locs, .. } => {
                locs
            }
        }
    }

    pub(crate) fn locations_mut(&mut self) -> &mut CaptureLocations {
        match self.0 {
            RegexCapturesImp::AhoCorasick { .. } => {
                panic!("getting locations for simple captures is invalid")
            }
            RegexCapturesImp::Regex { ref mut locs, .. } => {
                locs
            }
        }
    }

    pub(crate) fn strip_crlf(&mut self, yes: bool) {
        match self.0 {
            RegexCapturesImp::AhoCorasick { .. } => {
                panic!("setting strip_crlf for simple captures is invalid")
            }
            RegexCapturesImp::Regex { ref mut strip_crlf, .. } => {
                *strip_crlf = yes;
            }
        }
    }

    pub(crate) fn set_simple(&mut self, one: Option<Match>) {
        match self.0 {
            RegexCapturesImp::AhoCorasick { ref mut mat } => {
                *mat = one;
            }
            RegexCapturesImp::Regex { .. } => {
                panic!("setting simple captures for regex is invalid")
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use grep_matcher::{LineMatchKind, Matcher};
    use super::*;

    // Test that enabling word matches does the right thing and demonstrate
    // the difference between it and surrounding the regex in `\b`.
    #[test]
    fn word() {
        let matcher = RegexMatcherBuilder::new()
            .word(true)
            .build(r"-2")
            .unwrap();
        assert!(matcher.is_match(b"abc -2 foo").unwrap());

        let matcher = RegexMatcherBuilder::new()
            .word(false)
            .build(r"\b-2\b")
            .unwrap();
        assert!(!matcher.is_match(b"abc -2 foo").unwrap());
    }

    // Test that enabling a line terminator prevents it from matching through
    // said line terminator.
    #[test]
    fn line_terminator() {
        // This works, because there's no line terminator specified.
        let matcher = RegexMatcherBuilder::new()
            .build(r"abc\sxyz")
            .unwrap();
        assert!(matcher.is_match(b"abc\nxyz").unwrap());

        // This doesn't.
        let matcher = RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"abc\sxyz")
            .unwrap();
        assert!(!matcher.is_match(b"abc\nxyz").unwrap());
    }

    // Ensure that the builder returns an error if a line terminator is set
    // and the regex could not be modified to remove a line terminator.
    #[test]
    fn line_terminator_error() {
        assert!(RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"a\nz")
            .is_err())
    }

    // Test that enabling CRLF permits `$` to match at the end of a line.
    #[test]
    fn line_terminator_crlf() {
        // Test normal use of `$` with a `\n` line terminator.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .build(r"abc$")
            .unwrap();
        assert!(matcher.is_match(b"abc\n").unwrap());

        // Test that `$` doesn't match at `\r\n` boundary normally.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .build(r"abc$")
            .unwrap();
        assert!(!matcher.is_match(b"abc\r\n").unwrap());

        // Now check the CRLF handling.
        let matcher = RegexMatcherBuilder::new()
            .multi_line(true)
            .crlf(true)
            .build(r"abc$")
            .unwrap();
        assert!(matcher.is_match(b"abc\r\n").unwrap());
    }

    // Test that smart case works.
    #[test]
    fn case_smart() {
        let matcher = RegexMatcherBuilder::new()
            .case_smart(true)
            .build(r"abc")
            .unwrap();
        assert!(matcher.is_match(b"ABC").unwrap());

        let matcher = RegexMatcherBuilder::new()
            .case_smart(true)
            .build(r"aBc")
            .unwrap();
        assert!(!matcher.is_match(b"ABC").unwrap());
    }

    // Test that finding candidate lines works as expected.
    #[test]
    fn candidate_lines() {
        fn is_confirmed(m: LineMatchKind) -> bool {
            match m {
                LineMatchKind::Confirmed(_) => true,
                _ => false,
            }
        }
        fn is_candidate(m: LineMatchKind) -> bool {
            match m {
                LineMatchKind::Candidate(_) => true,
                _ => false,
            }
        }

        // With no line terminator set, we can't employ any optimizations,
        // so we get a confirmed match.
        let matcher = RegexMatcherBuilder::new()
            .build(r"\wfoo\s")
            .unwrap();
        let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
        assert!(is_confirmed(m));

        // With a line terminator and a regex specially crafted to have an
        // easy-to-detect inner literal, we can apply an optimization that
        // quickly finds candidate matches.
        let matcher = RegexMatcherBuilder::new()
            .line_terminator(Some(b'\n'))
            .build(r"\wfoo\s")
            .unwrap();
        let m = matcher.find_candidate_line(b"afoo ").unwrap().unwrap();
        assert!(is_candidate(m));
    }
}