1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
use std::io;
use std::ops::{Bound, RangeBounds};

use crate::{Error, ReaderCursor};

/// An iterator that is able to yield all the entries lying in a specified range.
#[derive(Clone)]
pub struct RangeIter<R> {
    cursor: ReaderCursor<R>,
    range: (Bound<Vec<u8>>, Bound<Vec<u8>>),
    move_on_start: bool,
}

impl<R: io::Read + io::Seek> RangeIter<R> {
    /// Creates a [`RangeIter`] that will read from the provided [`ReaderCursor`] type.
    pub(crate) fn new<S, A>(cursor: ReaderCursor<R>, range: S) -> RangeIter<R>
    where
        S: RangeBounds<A>,
        A: AsRef<[u8]>,
    {
        let start = map_bound(range.start_bound(), |bytes| bytes.as_ref().to_vec());
        let end = map_bound(range.end_bound(), |bytes| bytes.as_ref().to_vec());
        RangeIter { cursor, range: (start, end), move_on_start: true }
    }

    /// Returns the next entry that is inside of the given range.
    pub fn next(&mut self) -> Result<Option<(&[u8], &[u8])>, Error> {
        let entry = if self.move_on_start {
            self.move_on_start = false;
            match self.range.start_bound() {
                Bound::Unbounded => self.cursor.move_on_first()?,
                Bound::Included(start) => {
                    self.cursor.move_on_key_greater_than_or_equal_to(start)?
                }
                Bound::Excluded(start) => {
                    match self.cursor.move_on_key_greater_than_or_equal_to(start)? {
                        Some((key, _)) if key == start => self.cursor.move_on_next()?,
                        Some((key, val)) => Some((key, val)),
                        None => None,
                    }
                }
            }
        } else {
            self.cursor.move_on_next()?
        };

        match entry {
            Some((key, val)) if end_contains(self.range.end_bound(), key) => {
                let (key, val) = unsafe { crate::transmute_entry_to_static(key, val) };
                Ok(Some((key, val)))
            }
            _otherwise => Ok(None),
        }
    }
}

/// An iterator that is able to yield all the entries lying in a specified range in reverse order.
#[derive(Clone)]
pub struct RevRangeIter<R> {
    cursor: ReaderCursor<R>,
    range: (Bound<Vec<u8>>, Bound<Vec<u8>>),
    move_on_start: bool,
}

impl<R: io::Read + io::Seek> RevRangeIter<R> {
    /// Creates a [`RevRangeIter`] that will read from the provided [`ReaderCursor`] type.
    pub(crate) fn new<S, A>(cursor: ReaderCursor<R>, range: S) -> RevRangeIter<R>
    where
        S: RangeBounds<A>,
        A: AsRef<[u8]>,
    {
        let start = map_bound(range.start_bound(), |bytes| bytes.as_ref().to_vec());
        let end = map_bound(range.end_bound(), |bytes| bytes.as_ref().to_vec());
        RevRangeIter { cursor, range: (start, end), move_on_start: true }
    }

    /// Returns the next entry that is inside of the given range.
    pub fn next(&mut self) -> Result<Option<(&[u8], &[u8])>, Error> {
        let entry = if self.move_on_start {
            self.move_on_start = false;
            match self.range.end_bound() {
                Bound::Unbounded => self.cursor.move_on_last()?,
                Bound::Included(end) => self.cursor.move_on_key_lower_than_or_equal_to(end)?,
                Bound::Excluded(end) => {
                    match self.cursor.move_on_key_lower_than_or_equal_to(end)? {
                        Some((key, _)) if key == end => self.cursor.move_on_prev()?,
                        Some((key, val)) => Some((key, val)),
                        None => None,
                    }
                }
            }
        } else {
            self.cursor.move_on_prev()?
        };

        match entry {
            Some((key, val)) if start_contains(self.range.start_bound(), key) => {
                let (key, val) = unsafe { crate::transmute_entry_to_static(key, val) };
                Ok(Some((key, val)))
            }
            _otherwise => Ok(None),
        }
    }
}

/// Map the internal bound type to another type.
fn map_bound<T, U, F: FnOnce(T) -> U>(bound: Bound<T>, f: F) -> Bound<U> {
    match bound {
        Bound::Unbounded => Bound::Unbounded,
        Bound::Included(x) => Bound::Included(f(x)),
        Bound::Excluded(x) => Bound::Excluded(f(x)),
    }
}

/// Returns weither the provided key doesn't outbound this end bound.
fn end_contains(end: Bound<&Vec<u8>>, key: &[u8]) -> bool {
    match end {
        Bound::Unbounded => true,
        Bound::Included(end) => key <= end,
        Bound::Excluded(end) => key < end,
    }
}

/// Returns weither the provided key doesn't outbound this start bound.
fn start_contains(end: Bound<&Vec<u8>>, key: &[u8]) -> bool {
    match end {
        Bound::Unbounded => true,
        Bound::Included(end) => key >= end,
        Bound::Excluded(end) => key > end,
    }
}

#[cfg(test)]
mod tests {
    use std::collections::BTreeSet;
    use std::convert::TryInto;
    use std::io::Cursor;

    use rand::Rng;

    use crate::writer::Writer;
    use crate::Reader;

    #[test]
    #[cfg_attr(miri, ignore)]
    fn range_iter() {
        let mut writer = Writer::memory();
        let mut nums = BTreeSet::new();
        for x in (10..24000i32).step_by(3) {
            nums.insert(x);
            let x = x.to_be_bytes();
            writer.insert(&x, &x).unwrap();
        }

        let bytes = writer.into_inner().unwrap();
        assert_ne!(bytes.len(), 0);

        let reader = Reader::new(Cursor::new(bytes.as_slice())).unwrap();

        let mut rng = rand::thread_rng();
        for _ in 0..2000 {
            let a: i32 = rng.gen_range(0..=24020);
            let b: i32 = rng.gen_range(a..=24020);

            let expected: Vec<_> = nums.range(a..=b).copied().collect();

            let range = a.to_be_bytes()..=b.to_be_bytes();
            let mut range_iter = reader.clone().into_range_iter(range).unwrap();
            let mut found = Vec::with_capacity(expected.len());
            while let Some((k, v)) = range_iter.next().unwrap() {
                let k = k.try_into().map(i32::from_be_bytes).unwrap();
                let v = v.try_into().map(i32::from_be_bytes).unwrap();
                found.push(k);
                assert_eq!(k, v);
            }

            assert_eq!(expected, found);
        }
    }

    #[test]
    #[cfg_attr(miri, ignore)]
    fn rev_range_iter() {
        let mut writer = Writer::memory();
        let mut nums = BTreeSet::new();
        for x in (10..24000i32).step_by(3) {
            nums.insert(x);
            let x = x.to_be_bytes();
            writer.insert(&x, &x).unwrap();
        }

        let bytes = writer.into_inner().unwrap();
        assert_ne!(bytes.len(), 0);

        let reader = Reader::new(Cursor::new(bytes.as_slice())).unwrap();

        let mut rng = rand::thread_rng();
        for _ in 0..2000 {
            let a: i32 = rng.gen_range(0..=24020);
            let b: i32 = rng.gen_range(a..=24020);

            let expected: Vec<_> = nums.range(a..=b).rev().copied().collect();

            let range = a.to_be_bytes()..=b.to_be_bytes();
            let mut range_iter = reader.clone().into_rev_range_iter(range).unwrap();
            let mut found = Vec::with_capacity(expected.len());
            while let Some((k, v)) = range_iter.next().unwrap() {
                let k = k.try_into().map(i32::from_be_bytes).unwrap();
                let v = v.try_into().map(i32::from_be_bytes).unwrap();
                found.push(k);
                assert_eq!(k, v);
            }

            assert_eq!(expected, found);
        }
    }
}