1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
use core::fmt;
use super::{NaiveDateTime, DateTime, UnixTimestamp, Month, DayOfTheWeek};
use num::{div_floor, positive_rem};

pub trait TimeZone {
    fn from_timestamp(&self, t: UnixTimestamp) -> NaiveDateTime;
    fn to_timestamp(&self, d: &NaiveDateTime) -> Result<UnixTimestamp, LocalTimeConversionError>;
}

/// When a time zone makes clock jump forward or back at any instant in time
/// (for example twice a year with daylight-saving time, a.k.a. summer-time period)
/// This error is returned when either:
///
/// * Clocks went back and this local time occurred at multiple instants in time,
///   making its interpretation or conversion ambiguous.
///
/// * Clocks jumped forward and this local time did not occur.
///   It does not represent any real instant in time.
///   It could be argued that a range of local times all represent the same instant,
///   but this library does not implement the conversion that way.
#[derive(Eq, PartialEq)]
pub struct LocalTimeConversionError {
    /// Make the type opaque to allow for future extensions
    _private: (),
}

impl fmt::Debug for LocalTimeConversionError {
    fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
        write!(formatter, "LocalTimeConversionError")
    }
}

/// Implemented for time zones where `LocalTimeConversionError` never occurs,
/// namely for `Utc` and `FixedOffsetFromUtc`.
///
/// Any UTC-offset change in a time zone creates local times that either don’t occur or occur twice.
/// `TimeZone::to_timestamp` returns `Err(LocalTimeConversionError)` for such local times.
pub trait UnambiguousTimeZone: TimeZone {
    fn to_unambiguous_timestamp(&self, d: &NaiveDateTime) -> UnixTimestamp {
        self.to_timestamp(d).unwrap()
    }
}

/// The *Coordinated Universal Time* time time zone.
#[derive(Debug, Eq, PartialEq, Copy, Clone, Default)]
pub struct Utc;

impl UnambiguousTimeZone for Utc {}

impl TimeZone for Utc {
    fn from_timestamp(&self, u: UnixTimestamp) -> NaiveDateTime {
        let days_since_unix = div_floor(u.0, SECONDS_PER_DAY) as i32;
        let days = days_since_unix + days_since_d0(1970);
        let year = div_floor(days * 400, DAYS_PER_400YEARS) as i32;
        let day_of_the_year = days - days_since_d0(year);
        let (month, day) = Month::from_day_of_the_year(day_of_the_year, year.into());
        let hour = positive_rem(div_floor(u.0, SECONDS_PER_HOUR), 24) as u8;
        let minute = positive_rem(div_floor(u.0, SECONDS_PER_MINUTE), 60) as u8;
        let second = positive_rem(u.0, 60) as u8;
        NaiveDateTime::new(year, month, day, hour, minute, second)
    }

    fn to_timestamp(&self, d: &NaiveDateTime) -> Result<UnixTimestamp, LocalTimeConversionError> {
        Ok(UnixTimestamp(
            i64::from(days_since_unix(d)) * SECONDS_PER_DAY
            + i64::from(d.hour) * SECONDS_PER_HOUR
            + i64::from(d.minute) * SECONDS_PER_MINUTE
            + i64::from(d.second)
        ))
    }
}

/// The offset is typically positive east of Greenwich (longitude 0°), negative west.
///
/// For example, Japan Standard Time is UTC+09:00:
///
/// ```rust
/// use gregor::FixedOffsetFromUtc;
/// let jst = FixedOffsetFromUtc::from_hours_and_minutes(9, 0);
/// ```
#[derive(Debug, Eq, PartialEq, Copy, Clone, Default)]
pub struct FixedOffsetFromUtc {
    seconds_ahead_of_utc: i32,
}

impl FixedOffsetFromUtc {
    pub fn from_hours_and_minutes(hours: i32, minutes: i32) -> Self {
        FixedOffsetFromUtc {
            seconds_ahead_of_utc: (hours * 60 + minutes) * 60,
        }
    }
}

impl UnambiguousTimeZone for FixedOffsetFromUtc {}

impl TimeZone for FixedOffsetFromUtc {
    fn from_timestamp(&self, u: UnixTimestamp) -> NaiveDateTime {
        // When local time is ahead of UTC (positive offset)
        // that instant happened before midnight UTC
        // so there are more seconds since then.
        // (Add the offset rather than subtract it.)

        // Seconds since *this time zone*’s midnight of 1970-01-01.
        let seconds = u.0 + i64::from(self.seconds_ahead_of_utc);

        // This is not really a Unix timestamp or a UTC date-time,
        // but the two errors compensate to give a date-time in this time zone.
        Utc.from_timestamp(UnixTimestamp(seconds))
    }

    fn to_timestamp(&self, d: &NaiveDateTime) -> Result<UnixTimestamp, LocalTimeConversionError> {
        // Pretend this is UTC to obtain seconds since *this time zone*’s midnight of 1970-01-01.
        let seconds = Utc.to_unambiguous_timestamp(d).0;

        // For positives offsets (ahead of UTC) this is earlier in time than UTC midnight
        // (with more seconds), so *subtract* the offset to make a Unix timestamp.
        Ok(UnixTimestamp(seconds - i64::from(self.seconds_ahead_of_utc)))
    }
}

pub trait DaylightSaving {
    fn offset_outside_dst(&self) -> FixedOffsetFromUtc;
    fn offset_during_dst(&self) -> FixedOffsetFromUtc;
    fn is_in_dst(&self, t: UnixTimestamp) -> bool;
}

impl<Tz: DaylightSaving> TimeZone for Tz {
    fn from_timestamp(&self, u: UnixTimestamp) -> NaiveDateTime {
        let offset = if self.is_in_dst(u) {
            self.offset_during_dst()
        } else {
            self.offset_outside_dst()
        };
        offset.from_timestamp(u)
    }

    fn to_timestamp(&self, d: &NaiveDateTime) -> Result<UnixTimestamp, LocalTimeConversionError> {
        // The actual timestamp/instant is one of these two:
        let assuming_outside = self.offset_outside_dst().to_unambiguous_timestamp(d);
        let assuming_during = self.offset_during_dst().to_unambiguous_timestamp(d);

        // Let’s take Central Europe for example.
        // When converted to UTC, `assuming_outside` and `assuming_during` respectively
        // represent date-times one hour and two hours before `d`.
        // They are one hour apart.
        //
        // If both timestamps are in the same DST period (during DST or outside)
        // then we know for sure which of `assuming_outside` or `assuming_during` is correct.
        //
        // If they disagree, that means their one hour span contains a DST change:
        //
        // * 1 am UTC is between `d - 2 hours` and `d - 1 hour`
        // * `d - 2 hours` < 1am UTC, and 1am UTC <= `d - 1 hour`
        // * `d` < 3 am local time, and 2 am local time <= `d`
        // * `d` is between 2 am and 3 am local time.
        //
        // * In October when clocks go "back", this kind of local time happens twice the same day:
        //   it’s ambiguous.
        // * In March when clocks go "forward", that hour is skipped entirely.
        //   This kind of local time does not exist. This `d` value might come from buggy code.
        match (self.is_in_dst(assuming_outside), self.is_in_dst(assuming_during)) {
            (true, true) => Ok(assuming_during),
            (false, false) => Ok(assuming_outside),
            _ => Err(LocalTimeConversionError { _private: () }),
        }
    }
}

/// CET (Central European Time) / CEST (Central European Summer Time)
#[derive(Debug, Eq, PartialEq, Copy, Clone, Default)]
pub struct CentralEurope;

impl DaylightSaving for CentralEurope {
    fn offset_outside_dst(&self) -> FixedOffsetFromUtc {
        FixedOffsetFromUtc::from_hours_and_minutes(1, 0)
    }

    fn offset_during_dst(&self) -> FixedOffsetFromUtc {
        FixedOffsetFromUtc::from_hours_and_minutes(2, 0)
    }

    fn is_in_dst(&self, t: UnixTimestamp) -> bool {
        use Month::*;

        let d = DateTime::from_timestamp(t, Utc);

        // Directive 2000/84/EC of the European Parliament and of the Council
        // of 19 January 2001 on summer-time arrangements
        // http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32000L0084
        //
        // > Article 1
        //
        // > For the purposes of this Directive "summer-time period"
        // > shall mean the period of the year
        // > during which clocks are put forward by 60 minutes compared with the rest of the year.
        // >
        // > Article 2
        // >
        // > From 2002 onwards, the summer-time period shall begin, in every Member State,
        // > at 1.00 a.m., Greenwich Mean Time, on the last Sunday in March.
        // >
        // > Article 3
        // >
        // > From 2002 onwards, the summer-time period shall end, in every Member State,
        // > at 1.00 a.m., Greenwich Mean Time, on the last Sunday in October.
        if d.month() < March || d.month() > October {
            false
        } else if d.month() > March && d.month() < October {
            true
        } else if d.month() == March {
            !before_last_sunday_1_am(&d)
        } else if d.month() == October {
            before_last_sunday_1_am(&d)
        } else {
            unreachable!()
        }
    }
}

fn before_last_sunday_1_am(d: &DateTime<Utc>) -> bool {
    let last_sunday = last_of_the_month(d, DayOfTheWeek::Sunday);
    d.day() < last_sunday || (
        d.day() == last_sunday &&
        (d.hour(), d.minute(), d.second()) < (1, 0, 0)
    )
}

fn last_of_the_month(d: &DateTime<Utc>, requested_dow: DayOfTheWeek) -> u8 {
    let last_day = d.month().length(d.year().into());
    let last_dow = NaiveDateTime::new(d.year(), d.month(), last_day, 0, 0, 0).day_of_the_week();
    let difference = i32::from(last_dow.to_iso_number()) - i32::from(requested_dow.to_iso_number());
    last_day - (positive_rem(difference, 7) as u8)
}

pub fn days_since_unix(d: &NaiveDateTime) -> i32 {
    (d.year - 1970) * DAYS_PER_COMMON_YEAR
    + leap_days_since_y0(d.year) - leap_days_since_y0(1970)
    + d.month.days_since_january_1st(d.year.into())
    + i32::from(d.day - 1)
}

/// How many leap days occurred between January of year 0 and January of the given year
/// (in Gregorian calendar).
pub fn leap_days_since_y0(year: i32) -> i32 {
    if year > 0 {
        let year = year - 1;  // Don’t include Feb 29 of the given year, if any.
        // +1 because year 0 is a leap year.
        ((year / 4) - (year / 100) + (year / 400)) + 1
    } else {
        let year = -year;
        -((year / 4) - (year / 100) + (year / 400))
    }
}

/// Days between January 1st of year 0 and January 1st of the given year.
fn days_since_d0(year: i32) -> i32 {
    year * DAYS_PER_COMMON_YEAR + leap_days_since_y0(year)
}

const SECONDS_PER_MINUTE: i64 = 60;
const SECONDS_PER_HOUR: i64 = SECONDS_PER_MINUTE * 60;
const SECONDS_PER_DAY: i64 = SECONDS_PER_HOUR * 24;

/// The leap year schedule of the Gregorian calendar cycles every 400 years.
/// In one cycle, there are:
///
/// * 100 years multiple of 4
/// * 4 years multiple of 100
/// * 1 year multiple of 400
const LEAP_DAYS_PER_400YEARS: i32 = 100 - 4 + 1;

const DAYS_PER_COMMON_YEAR: i32 = 365;
const DAYS_PER_400YEARS: i32 = DAYS_PER_COMMON_YEAR * 400 + LEAP_DAYS_PER_400YEARS;