1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use greenwasm_structure::types::*;

use std::intrinsics;

macro_rules! define_trait {
    (
        trait $traitname:ident for {$implty:ty, $($t:tt)*};

        $(
            type $at:ident = {$atimplty:ty, $($u:tt)*};
        )*

        $(
            fn $name:ident($($arg:ident : $argty:ty),*) -> $rty:ty $b:block
        )*
    ) => {
        impl $traitname for $implty {
            $(
                type $at = $atimplty;
            )*

            $(
                #[inline(always)]
                fn $name($($arg : $argty),*) -> $rty $b
            )*
        }
        define_trait! {
            trait $traitname for {$($t)*};
            $(
                type $at = {$($u)*};
            )*

            $(
                fn $name($($arg : $argty),*) -> $rty $b
            )*
        }
    };
    (
        trait $traitname:ident for {};

        $(
            type $at:ident = {};
        )*

        $(
            fn $name:ident($($arg:ident : $argty:ty),*) -> $rty:ty $b:block
        )*
    ) => {
        pub trait $traitname: Sized {
            $(
                type $at;
            )*

            $(
                fn $name($($arg : $argty),*) -> $rty;
            )*
        }
    }
}

pub enum Partial<T> {
    Val(T),
    None,
}
impl<T> From<Option<T>> for Partial<T> {
    fn from(o: Option<T>) -> Self {
        o.map(Partial::Val).unwrap_or(Partial::None)
    }
}

define_trait! {
    trait IntegerOperations for { I32, I64, };

    type S = { S32, S64, };
    type U = { U32, U64, };

    fn signed(i: Self) -> Self::S { i as Self::S }
    fn rsigned(i: Self::S) -> Self { i as Self }
    fn n() -> Self { ::std::mem::size_of::<Self>() as Self * 8 }

    fn bool(v: bool) -> Self { if v { 1 } else { 0 } }
    fn iadd(i1: Self, i2: Self) -> Self {
        i1.wrapping_add(i2)
    }
    fn isub(i1: Self, i2: Self) -> Self {
        i1.wrapping_sub(i2)
    }
    fn imul(i1: Self, i2: Self) -> Self {
        i1.wrapping_mul(i2)
    }
    fn idiv_u(i1: Self, i2: Self) -> Partial<Self> {
        i1.checked_div(i2).into()
    }
    fn idiv_s(i1: Self, i2: Self) -> Partial<Self> {
        let j1 = Self::signed(i1);
        let j2 = Self::signed(i2);

        j1.checked_div(j2).map(Self::rsigned).into()
    }
    fn irem_u(i1: Self, i2: Self) -> Partial<Self> {
        i1.checked_rem(i2).into()
    }
    fn irem_s(i1: Self, i2: Self) -> Partial<Self> {
        let j1 = Self::signed(i1);
        let j2 = Self::signed(i2);

        if i2 != 0 {
            Some(Self::rsigned(j1.wrapping_rem(j2))).into()
        } else {
            None.into()
        }
    }
    fn iand(i1: Self, i2: Self) -> Self {
        i1 & i2
    }
    fn ior(i1: Self, i2: Self) -> Self {
        i1 | i2
    }
    fn ixor(i1: Self, i2: Self) -> Self {
        i1 ^ i2
    }
    fn ishl(i1: Self, i2: Self) -> Self {
        let k = i2 % Self::n();
        i1 << k
    }
    fn ishr_u(i1: Self, i2: Self) -> Self {
        let k = i2 % Self::n();
        i1 >> k
    }
    fn ishr_s(i1: Self, i2: Self) -> Self {
        let k = i2 % Self::n();
        Self::rsigned(Self::signed(i1) >> Self::signed(k))
    }
    fn irotl(i1: Self, i2: Self) -> Self {
        let k = i2 % Self::n();
        i1.rotate_left(k as u32)
    }
    fn irotr(i1: Self, i2: Self) -> Self {
        let k = i2 % Self::n();
        i1.rotate_right(k as u32)
    }
    fn iclz(i: Self) -> Self {
        i.leading_zeros() as Self
    }
    fn ictz(i: Self) -> Self {
        i.trailing_zeros() as Self
    }
    fn ipopcnt(i: Self) -> Self {
        i.count_ones() as Self
    }
    fn ieqz(i: Self) -> I32 {
        I32::bool(i == 0)
    }
    fn ieq(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 == i2)
    }
    fn ine(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 != i2)
    }
    fn ilt_u(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 < i2)
    }
    fn ilt_s(i1: Self, i2: Self) -> I32 {
        I32::bool(Self::signed(i1) < Self::signed(i2))
    }
    fn igt_u(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 > i2)
    }
    fn igt_s(i1: Self, i2: Self) -> I32 {
        I32::bool(Self::signed(i1) > Self::signed(i2))
    }
    fn ile_u(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 <= i2)
    }
    fn ile_s(i1: Self, i2: Self) -> I32 {
        I32::bool(Self::signed(i1) <= Self::signed(i2))
    }
    fn ige_u(i1: Self, i2: Self) -> I32 {
        I32::bool(i1 >= i2)
    }
    fn ige_s(i1: Self, i2: Self) -> I32 {
        I32::bool(Self::signed(i1) >= Self::signed(i2))
    }
}

trait FloatIntrinsics {
    fn copysign(z1: Self, z2: Self) -> Self;
    fn rint(z: Self) -> Self;
    fn nearbyint(z: Self) -> Self;
}
impl FloatIntrinsics for f32 {
    fn copysign(z1: Self, z2: Self) -> Self {
        unsafe { intrinsics::copysignf32(z1, z2) }
    }
    fn rint(z: Self) -> Self {
        unsafe { intrinsics::rintf32(z) }
    }
    fn nearbyint(z: Self) -> Self {
        unsafe { intrinsics::nearbyintf32(z) }
    }
}
impl FloatIntrinsics for f64 {
    fn copysign(z1: Self, z2: Self) -> Self {
        unsafe { intrinsics::copysignf64(z1, z2) }
    }
    fn rint(z: Self) -> Self {
        unsafe { intrinsics::rintf64(z) }
    }
    fn nearbyint(z: Self) -> Self {
        unsafe { intrinsics::nearbyintf64(z) }
    }
}

// NB: These operations hold under the assumptions from the WA spec
// regarding the rounding and tie breaking modes of the hardware.
//
// TODO: Figure out how to enforce/check/set them for Rust
define_trait! {
    trait FloatingPointOperations for { F32, F64, };

    fn fadd(z1: Self, z2: Self) -> Self {
        z1 + z2
    }
    fn fsub(z1: Self, z2: Self) -> Self {
        z1 - z2
    }
    fn fmul(z1: Self, z2: Self) -> Self {
        z1 * z2
    }
    fn fdiv(z1: Self, z2: Self) -> Self {
        z1 / z2
    }
    fn fmin(z1: Self, z2: Self) -> Self {
        if z1.is_nan() {return z1;}
        if z2.is_nan() {return z2;}
        z1.min(z2)
    }
    fn fmax(z1: Self, z2: Self) -> Self {
        if z1.is_nan() {return z1;}
        if z2.is_nan() {return z2;}
        z1.max(z2)
    }
    fn fcopysign(z1: Self, z2: Self) -> Self {
        FloatIntrinsics::copysign(z1, z2)
    }
    fn fabs(z: Self) -> Self {
        z.abs()
    }
    fn fneg(z: Self) -> Self {
        -z
    }
    fn fsqrt(z: Self) -> Self {
        z.sqrt() // TODO: figure out how deterministic this is
    }
    fn fceil(z: Self) -> Self {
        z.ceil()
    }
    fn ffloor(z: Self) -> Self {
        z.floor()
    }
    fn ftrunc(z: Self) -> Self {
        z.trunc()
    }
    fn fnearest(z: Self) -> Self {
        FloatIntrinsics::nearbyint(z)
    }
    fn feq(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 == z2)
    }
    fn fne(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 != z2)
    }
    fn flt(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 < z2)
    }
    fn fgt(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 > z2)
    }
    fn fle(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 <= z2)
    }
    fn fge(z1: Self, z2: Self) -> I32 {
        I32::bool(z1 >= z2)
    }
}

// Conversion

#[inline(always)]
pub fn extend_u(i: I32) -> I64 {
    i as I64
}
#[inline(always)]
pub fn extend_s(i: I32) -> I64 {
    I64::rsigned(I32::signed(i) as S64)
}
#[inline(always)]
pub fn wrap(i: I64) -> I32 {
    i as I32
}

// NB: Due to precision reasons, we need to be careful with what values we compare
const F32_MAX_I32_EXCLUSIVE: f32 = 2147483648_f32;
const F32_MIN_I32_INCLUSIVE: f32 = -2147483648_f32;
const F32_MAX_U32_EXCLUSIVE: f32 = 4294967296_f32;

const F32_MAX_I64_EXCLUSIVE: f32 = 9223372036854775808_f32;
const F32_MIN_I64_INCLUSIVE: f32 = -9223372036854775808_f32;
const F32_MAX_U64_EXCLUSIVE: f32 = 18446744073709551616_f32;

const F64_MAX_I32_EXCLUSIVE: f64 = 2147483648_f64;
const F64_MIN_I32_INCLUSIVE: f64 = -2147483648_f64;
const F64_MAX_U32_EXCLUSIVE: f64 = 4294967296_f64;

const F64_MAX_I64_EXCLUSIVE: f64 = 9223372036854775808_f64;
const F64_MIN_I64_INCLUSIVE: f64 = -9223372036854775808_f64;
const F64_MAX_U64_EXCLUSIVE: f64 = 18446744073709551616_f64;

#[inline(always)]
pub fn trunc_u_f32_i32(z: F32) -> Partial<I32> {
    if z.is_finite() {
        let z = z.trunc();
        if (0.0 <= z) && (z < F32_MAX_U32_EXCLUSIVE) {
            return Partial::Val(z as I32);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_u_f32_i64(z: F32) -> Partial<I64> {
    if z.is_finite() {
        let z = z.trunc();
        if (0.0 <= z) && (z < F32_MAX_U64_EXCLUSIVE) {
            return Partial::Val(z as I64);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_u_f64_i32(z: F64) -> Partial<I32> {
    if z.is_finite() {
        let z = z.trunc();
        if (0.0 <= z) && (z < F64_MAX_U32_EXCLUSIVE) {
            return Partial::Val(z as I32);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_u_f64_i64(z: F64) -> Partial<I64> {
    if z.is_finite() {
        let z = z.trunc();
        if (0.0 <= z) && (z < F64_MAX_U64_EXCLUSIVE) {
            return Partial::Val(z as I64);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_s_f32_i32(z: F32) -> Partial<I32> {
    if z.is_finite() {
        let z = z.trunc();
        if (F32_MIN_I32_INCLUSIVE <= z) && (z < F32_MAX_I32_EXCLUSIVE) {
            return Partial::Val(z as S32 as I32);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_s_f32_i64(z: F32) -> Partial<I64> {
    if z.is_finite() {
        let z = z.trunc();
        if (F32_MIN_I64_INCLUSIVE <= z) && (z < F32_MAX_I64_EXCLUSIVE) {
            return Partial::Val(z as S64 as I64);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_s_f64_i32(z: F64) -> Partial<I32> {
    if z.is_finite() {
        let z = z.trunc();
        if (F64_MIN_I32_INCLUSIVE <= z) && (z < F64_MAX_I32_EXCLUSIVE){
            return Partial::Val(z as S32 as I32);
        }
    }
    Partial::None
}
#[inline(always)]
pub fn trunc_s_f64_i64(z: F64) -> Partial<I64> {
    if z.is_finite() {
        let z = z.trunc();
        if (F64_MIN_I64_INCLUSIVE <= z) && (z < F64_MAX_I64_EXCLUSIVE) {
            return Partial::Val(z as S64 as I64);
        }
    }
    Partial::None
}

#[inline(always)]
pub fn promote(z: F32) -> F64 {
    z as F64
}

#[inline(always)]
pub fn demote(z: F64) -> F32 {
    z as F32
}

#[inline(always)]
pub fn convert_u_i32_f32(i: I32) -> F32 {
    i as F32
}
#[inline(always)]
pub fn convert_u_i32_f64(i: I32) -> F64 {
    i as F64
}
#[inline(always)]
pub fn convert_u_i64_f32(i: I64) -> F32 {
    i as F32
}
#[inline(always)]
pub fn convert_u_i64_f64(i: I64) -> F64 {
    i as F64
}
#[inline(always)]
pub fn convert_s_i32_f32(i: I32) -> F32 {
    IntegerOperations::signed(i) as F32
}
#[inline(always)]
pub fn convert_s_i32_f64(i: I32) -> F64 {
    IntegerOperations::signed(i) as F64
}
#[inline(always)]
pub fn convert_s_i64_f32(i: I64) -> F32 {
    IntegerOperations::signed(i) as F32
}
#[inline(always)]
pub fn convert_s_i64_f64(i: I64) -> F64 {
    IntegerOperations::signed(i) as F64
}

#[inline(always)]
pub fn reinterpret_i32_f32(i: I32) -> F32 {
    F32::from_bits(i)
}
#[inline(always)]
pub fn reinterpret_i64_f64(i: I64) -> F64 {
    F64::from_bits(i)
}
#[inline(always)]
pub fn reinterpret_f32_i32(z: F32) -> I32 {
    z.to_bits()
}
#[inline(always)]
pub fn reinterpret_f64_i64(z: F64) -> I64 {
    z.to_bits()
}