1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
use crate::algo::Algorithms;
use crate::any_graph::AnyGraph;
use crate::kinship::Kinship;
use crate::types::{Key, Value, Vertex};
use crate::Edge;
use std::borrow::BorrowMut;
use std::collections::hash_map::RandomState;
use std::collections::{HashMap, HashSet};

/// A basic implementation of a directed graph.
/// It doesn't allow multiple edges but allow loops.
#[derive(Clone, PartialEq)]
pub struct BasicDirectedGraph<K, V>
where
    K: Key,
    V: Value,
{
    vertices: HashSet<Vertex<K, V>>,
    edges: HashSet<Edge<K>>,
}

impl<K, V> AnyGraph<K, V> for BasicDirectedGraph<K, V>
where
    K: Key,
    V: Value,
{
    /// Get the vertices of the graph.
    /// Complexity: O(1*).
    fn vertices(&self) -> Vec<Vertex<K, V>> {
        self.vertices.iter().cloned().collect()
    }

    /// Get the edges of the graph.
    /// Complexity: O(1*).
    fn edges(&self) -> Vec<Edge<K>> {
        self.edges.iter().cloned().collect()
    }

    /// Add a new vertex then return the graph.
    /// Complexity: O(1*).
    fn add_vertex(&self, vertex: Vertex<K, V>) -> Option<Self> {
        let mut new_graph = self.clone();
        return if new_graph.vertices.borrow_mut().insert(vertex) {
            Some(new_graph)
        } else {
            None
        };
    }

    /// Remove a vertex then return the new graph, the deleted vertex and its edges.
    /// Complexity: O(E).
    fn remove_vertex(&self, vertex: &Vertex<K, V>) -> Option<(Self, Vertex<K, V>, Vec<Edge<K>>)> {
        let mut new_graph = self.clone();
        return if let Some(removed_vertex) = self.vertices.get(&vertex) {
            if new_graph.vertices.remove(removed_vertex) {
                if let Some((new_graph, removed_edges)) =
                    new_graph.internal_remove_all_edges_where_vertex(removed_vertex)
                {
                    Some((new_graph, *removed_vertex, removed_edges))
                } else {
                    None
                }
            } else {
                None
            }
        } else {
            None
        };
    }

    /// Remove all vertices then return the new graph, the deleted vertices and all the edges.
    /// Complexity: O(1*).
    fn remove_all_vertices(&self) -> Option<(Self, Vec<Vertex<K, V>>, Vec<Edge<K>>)> {
        let new_graph = BasicDirectedGraph::new();
        let vertices = self.vertices();
        let edges = self.edges();

        Some((new_graph, vertices, edges))
    }

    /// Remove a vertex by its key then return the new graph, the deleted vertex and its edges.
    /// Complexity: O(E).
    fn remove_vertex_where_key(&self, key: K) -> Option<(Self, Vertex<K, V>, Vec<Edge<K>>)> {
        let vertex: Vertex<K, V> = Vertex::new(key);
        self.remove_vertex(&vertex)
    }

    /// Add a new edge then return the new graph.
    /// Complexity: O(1*).
    fn add_edge(&self, edge: Edge<K>) -> Option<Self> {
        let vertex_from: Vertex<K, V> = Vertex::new(edge.from().clone());
        let vertex_to: Vertex<K, V> = Vertex::new(edge.to().clone());
        if !self.vertices.contains(&vertex_from) || !self.vertices.contains(&vertex_to) {
            return None;
        }

        let mut new_graph = self.clone();
        return if new_graph.edges.insert(edge) {
            Some(new_graph)
        } else {
            None
        };
    }

    /// Add a new edge between 2 keys then return the new graph.
    /// Complexity: O(1*).
    fn add_edge_between_keys(&self, key_from: K, key_to: K) -> Option<Self> {
        self.add_edge(Edge::new(key_from, key_to))
    }

    /// Remove an existing edge then return the new graph and the deleted edge.
    /// Complexity: O(1*).
    fn remove_edge(&self, edge: &Edge<K>) -> Option<(Self, Edge<K>)> {
        let mut new_graph = self.clone();
        return if let Some(removed_edge) = self.edges.get(edge) {
            if new_graph.edges.remove(removed_edge) {
                Some((new_graph, *removed_edge))
            } else {
                None
            }
        } else {
            None
        };
    }

    /// Remove an existing edge by their keys, then return the new graph and the deleted edge.
    /// Complexity: O(1*).
    fn remove_edge_where_keys(&self, key_from: K, key_to: K) -> Option<(Self, Edge<K>)> {
        let edge = Edge::new(key_from, key_to);
        self.remove_edge(&edge)
    }

    /// Remove all the edges then return the new graph and all the deleted edges.
    /// Complexity: O(1*).
    fn remove_all_edges(&self) -> Option<(Self, Vec<Edge<K>>)> {
        let new_graph = BasicDirectedGraph {
            vertices: self.vertices.clone(),
            edges: HashSet::new(),
        };
        let edges = self.edges();

        Some((new_graph, edges))
    }

    /// Remove all existing edges from or to a given vertex, then return the new graph and the deleted edges.
    /// Complexity: O(E).
    fn remove_all_edges_where_vertex(&self, vertex: &Vertex<K, V>) -> Option<(Self, Vec<Edge<K>>)> {
        if !self.vertices.contains(vertex) {
            return None;
        }
        self.internal_remove_all_edges_where_vertex(vertex)
    }

    /// Remove all existing edges from or to a given key, then return the new graph and the deleted edges.
    /// Complexity: O(E).
    fn remove_all_edges_where_key(&self, key_from: K) -> Option<(Self, Vec<Edge<K>>)> {
        let vertex = Vertex::new(key_from);
        self.remove_all_edges_where_vertex(&vertex)
    }

    /// Remove all existing edges from a given vertex, then return the new graph and the deleted edges.
    /// Complexity: O(E).
    fn remove_all_edges_from_vertex(&self, vertex: &Vertex<K, V>) -> Option<(Self, Vec<Edge<K>>)> {
        if !self.vertices.contains(vertex) {
            return None;
        }
        let mut new_graph = self.clone();
        let removed_edges: Vec<Edge<K>> = new_graph
            .edges
            .iter()
            .cloned()
            .filter(|edge| edge.from().eq(vertex.key()))
            .collect();
        new_graph.edges = new_graph
            .edges
            .into_iter()
            .filter(|edge| !(edge.from().eq(vertex.key())))
            .collect();

        Some((new_graph, removed_edges))
    }

    /// Remove all existing edges from a given key, then return the new graph and the deleted edges.
    /// Complexity: O(E).
    fn remove_all_edges_from_key(&self, key_from: K) -> Option<(Self, Vec<Edge<K>>)> {
        let vertex = Vertex::new(key_from);
        self.remove_all_edges_from_vertex(&vertex)
    }
}

impl<K, V> Kinship<K, V> for BasicDirectedGraph<K, V>
where
    K: Key,
    V: Value,
{
    /// Get the successors of each vertex.
    /// Complexity: O(V + E).
    fn successors(&self) -> HashMap<Vertex<K, V>, Vec<Edge<K>>, RandomState> {
        let init_hashmap = self
            .vertices
            .iter()
            .fold(HashMap::new(), |mut acc, vertex| {
                let vec: Vec<Edge<K>> = vec![];
                acc.insert(vertex.clone(), vec);
                acc
            });
        self.edges.iter().fold(init_hashmap, |mut acc, edge| {
            let tmp_vertex = Vertex::new(edge.from().clone());
            if let Some(vector) = acc.get_mut(&tmp_vertex) {
                vector.push(edge.clone());
            }
            acc
        })
    }

    /// Get the predecessors of each vertex.
    /// Complexity: O(V + E).
    fn predecessors(&self) -> HashMap<Vertex<K, V>, Vec<Edge<K>>, RandomState> {
        let init_hashmap = self
            .vertices
            .iter()
            .fold(HashMap::new(), |mut acc, vertex| {
                let vec: Vec<Edge<K>> = vec![];
                acc.insert(vertex.clone(), vec);
                acc
            });
        self.edges.iter().fold(init_hashmap, |mut acc, edge| {
            let tmp_vertex = Vertex::new(edge.to().clone());
            if let Some(vector) = acc.get_mut(&tmp_vertex) {
                vector.push(edge.clone());
            }
            acc
        })
    }
}

impl<K, V> Algorithms<K, V> for BasicDirectedGraph<K, V>
where
    K: Key,
    V: Value,
{
}

impl<K, V> BasicDirectedGraph<K, V>
where
    K: Key,
    V: Value,
{
    /// Create a new directed graph.
    /// Complexity: O(1)
    pub fn new() -> Self {
        BasicDirectedGraph {
            vertices: HashSet::new(),
            edges: HashSet::new(),
        }
    }

    fn internal_remove_all_edges_where_vertex(
        &self,
        vertex: &Vertex<K, V>,
    ) -> Option<(Self, Vec<Edge<K>>)> {
        let mut new_graph = self.clone();
        let removed_edges: Vec<Edge<K>> = new_graph
            .edges
            .iter()
            .cloned()
            .filter(|edge| edge.from().eq(vertex.key()) || edge.to().eq(vertex.key()))
            .collect();
        new_graph.edges = new_graph
            .edges
            .into_iter()
            .filter(|edge| !(edge.from().eq(vertex.key()) || edge.to().eq(vertex.key())))
            .collect();

        Some((new_graph, removed_edges))
    }
}