1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
use super::{EdgeContainer, GraphStatistic, GraphStorage};
use crate::{
    annostorage::{inmemory::AnnoStorageImpl, AnnotationStorage, Match},
    dfs::{CycleSafeDFS, DFSStep},
    errors::Result,
    graph::NODE_NAME_KEY,
    types::{Edge, NodeID, NumValue},
};
use rustc_hash::{FxHashMap, FxHashSet};
use serde::{Deserialize, Serialize};
use std::clone::Clone;
use std::{ops::Bound::*, path::Path};

#[derive(PartialOrd, PartialEq, Ord, Eq, Clone, Serialize, Deserialize, MallocSizeOf)]
pub struct PrePost<OrderT, LevelT> {
    pub pre: OrderT,
    pub post: OrderT,
    pub level: LevelT,
}

#[derive(Serialize, Deserialize, Clone, MallocSizeOf, Debug)]
enum OrderVecEntry<OrderT, LevelT> {
    None,
    Pre {
        post: OrderT,
        level: LevelT,
        node: NodeID,
    },
    Post {
        pre: OrderT,
        level: LevelT,
        node: NodeID,
    },
}

#[derive(Serialize, Deserialize, Clone, MallocSizeOf)]
pub struct PrePostOrderStorage<OrderT: NumValue, LevelT: NumValue> {
    node_to_order: FxHashMap<NodeID, Vec<PrePost<OrderT, LevelT>>>,
    order_to_node: Vec<OrderVecEntry<OrderT, LevelT>>,
    annos: AnnoStorageImpl<Edge>,
    stats: Option<GraphStatistic>,
}

struct NodeStackEntry<OrderT, LevelT> {
    pub id: NodeID,
    pub order: PrePost<OrderT, LevelT>,
}

impl<OrderT, LevelT> Default for PrePostOrderStorage<OrderT, LevelT>
where
    OrderT: NumValue,
    LevelT: NumValue,
{
    fn default() -> Self {
        PrePostOrderStorage::new()
    }
}

impl<OrderT, LevelT> PrePostOrderStorage<OrderT, LevelT>
where
    OrderT: NumValue,
    LevelT: NumValue,
{
    pub fn new() -> PrePostOrderStorage<OrderT, LevelT> {
        PrePostOrderStorage {
            node_to_order: FxHashMap::default(),
            order_to_node: Vec::new(),
            annos: AnnoStorageImpl::new(),
            stats: None,
        }
    }

    pub fn clear(&mut self) -> Result<()> {
        self.node_to_order.clear();
        self.order_to_node.clear();
        self.annos.clear()?;
        self.stats = None;
        Ok(())
    }

    fn enter_node(
        current_order: &mut OrderT,
        node_id: NodeID,
        level: LevelT,
        node_stack: &mut NStack<OrderT, LevelT>,
    ) {
        let new_entry = NodeStackEntry {
            id: node_id,
            order: PrePost {
                pre: current_order.clone(),
                level,
                post: OrderT::zero(),
            },
        };
        current_order.add_assign(OrderT::one());
        node_stack.push_front(new_entry);
    }

    fn exit_node(&mut self, current_order: &mut OrderT, node_stack: &mut NStack<OrderT, LevelT>) {
        // find the correct pre/post entry and update the post-value
        if let Some(entry) = node_stack.front_mut() {
            entry.order.post = current_order.clone();
            current_order.add_assign(OrderT::one());

            self.node_to_order
                .entry(entry.id)
                .or_insert_with(|| Vec::with_capacity(1))
                .push(entry.order.clone());
        }
        node_stack.pop_front();
    }
}

type NStack<OrderT, LevelT> = std::collections::LinkedList<NodeStackEntry<OrderT, LevelT>>;

impl<OrderT: 'static, LevelT: 'static> EdgeContainer for PrePostOrderStorage<OrderT, LevelT>
where
    for<'de> OrderT: NumValue + Deserialize<'de> + Serialize,
    for<'de> LevelT: NumValue + Deserialize<'de> + Serialize,
{
    fn get_outgoing_edges<'a>(&'a self, node: NodeID) -> Box<dyn Iterator<Item = NodeID> + 'a> {
        self.find_connected(node, 1, Included(1))
    }

    fn get_ingoing_edges<'a>(&'a self, node: NodeID) -> Box<dyn Iterator<Item = NodeID> + 'a> {
        self.find_connected_inverse(node, 1, Included(1))
    }

    fn source_nodes<'a>(&'a self) -> Box<dyn Iterator<Item = NodeID> + 'a> {
        let it = self.node_to_order.iter().filter_map(move |(n, _order)| {
            // check if this is actual a source node (and not only a target node)
            if self.get_outgoing_edges(*n).next().is_some() {
                Some(*n)
            } else {
                None
            }
        });
        Box::new(it)
    }

    fn get_statistics(&self) -> Option<&GraphStatistic> {
        self.stats.as_ref()
    }
}

impl<OrderT: 'static, LevelT: 'static> GraphStorage for PrePostOrderStorage<OrderT, LevelT>
where
    for<'de> OrderT: NumValue + Deserialize<'de> + Serialize,
    for<'de> LevelT: NumValue + Deserialize<'de> + Serialize,
{
    fn get_anno_storage(&self) -> &dyn AnnotationStorage<Edge> {
        &self.annos
    }

    fn serialization_id(&self) -> String {
        format!(
            "PrePostOrderO{}L{}V1",
            std::mem::size_of::<OrderT>() * 8,
            std::mem::size_of::<LevelT>() * 8
        )
    }

    fn load_from(location: &Path) -> Result<Self>
    where
        for<'de> Self: std::marker::Sized + Deserialize<'de>,
    {
        let mut result: Self = super::default_deserialize_gs(location)?;
        result.annos.after_deserialization();
        Ok(result)
    }

    fn save_to(&self, location: &Path) -> Result<()> {
        super::default_serialize_gs(self, location)?;
        Ok(())
    }

    fn find_connected<'a>(
        &'a self,
        node: NodeID,
        min_distance: usize,
        max_distance: std::ops::Bound<usize>,
    ) -> Box<dyn Iterator<Item = NodeID> + 'a> {
        if let Some(start_orders) = self.node_to_order.get(&node) {
            let mut visited = FxHashSet::<NodeID>::default();

            let max_distance = match max_distance {
                Unbounded => usize::max_value(),
                Included(max_distance) => max_distance,
                Excluded(max_distance) => max_distance - 1,
            };

            let it = start_orders
                .iter()
                .flat_map(move |root_order: &PrePost<OrderT, LevelT>| {
                    let start = root_order.pre.to_usize().unwrap_or(0);
                    let end = root_order
                        .post
                        .to_usize()
                        .unwrap_or(self.order_to_node.len() - 1)
                        + 1;
                    self.order_to_node[start..end]
                        .iter()
                        .map(move |order| (root_order.clone(), order))
                })
                .filter_map(move |(root, order)| match order {
                    OrderVecEntry::Pre {
                        ref post,
                        ref level,
                        ref node,
                    } => {
                        if let (Some(current_level), Some(root_level)) =
                            (level.to_usize(), root.level.to_usize())
                        {
                            let diff_level = current_level - root_level;
                            if *post <= root.post
                                && min_distance <= diff_level
                                && diff_level <= max_distance
                            {
                                Some(*node)
                            } else {
                                None
                            }
                        } else {
                            None
                        }
                    }
                    _ => None,
                })
                .filter(move |n| visited.insert(*n));
            Box::new(it)
        } else {
            Box::new(std::iter::empty())
        }
    }

    fn find_connected_inverse<'a>(
        &'a self,
        start_node: NodeID,
        min_distance: usize,
        max_distance: std::ops::Bound<usize>,
    ) -> Box<dyn Iterator<Item = NodeID> + 'a> {
        if let Some(start_orders) = self.node_to_order.get(&start_node) {
            let mut visited = FxHashSet::<NodeID>::default();

            let max_distance = match max_distance {
                Unbounded => usize::max_value(),
                Included(max_distance) => max_distance,
                Excluded(max_distance) => max_distance - 1,
            };

            let it = start_orders
                .iter()
                .flat_map(move |root_order: &PrePost<OrderT, LevelT>| {
                    let root_pre = root_order.pre.clone().to_usize().unwrap_or(0);
                    let root_post = root_order
                        .post
                        .clone()
                        .to_usize()
                        .unwrap_or(self.order_to_node.len() - 1);

                    // decide which search range (either 0..pre or post..len()) is smaller
                    let (start, end, use_post) = if self.order_to_node.len() - root_post < root_pre
                    {
                        // use post..len()
                        (root_post, self.order_to_node.len(), true)
                    } else {
                        // use 0..pre
                        (0, root_pre + 1, false)
                    };

                    self.order_to_node[start..end]
                        .iter()
                        .enumerate()
                        .map(move |(idx, order)| (use_post, root_order.clone(), start + idx, order))
                })
                .filter_map(move |(use_post, root, idx, order)| {
                    let (current_pre, current_post, current_level, current_node) = if use_post {
                        match order {
                            OrderVecEntry::Post {
                                ref pre,
                                ref level,
                                ref node,
                            } => (pre.to_usize(), Some(idx), level.to_usize(), Some(node)),
                            _ => (None, None, None, None),
                        }
                    } else {
                        match order {
                            OrderVecEntry::Pre {
                                ref post,
                                ref level,
                                ref node,
                            } => (Some(idx), post.to_usize(), level.to_usize(), Some(node)),
                            _ => (None, None, None, None),
                        }
                    };

                    if let (
                        Some(current_node),
                        Some(current_pre),
                        Some(current_post),
                        Some(current_level),
                        Some(root_level),
                        Some(root_pre),
                        Some(root_post),
                    ) = (
                        current_node,
                        current_pre,
                        current_post,
                        current_level,
                        root.level.to_usize(),
                        root.pre.to_usize(),
                        root.post.to_usize(),
                    ) {
                        let diff_level = root_level - current_level;
                        if current_pre <= root_pre
                            && current_post >= root_post
                            && min_distance <= diff_level
                            && diff_level <= max_distance
                        {
                            Some(*current_node)
                        } else {
                            None
                        }
                    } else {
                        None
                    }
                })
                .filter(move |n| visited.insert(*n));
            Box::new(it)
        } else {
            Box::new(std::iter::empty())
        }
    }

    fn distance(&self, source: NodeID, target: NodeID) -> Option<usize> {
        if source == target {
            return Some(0);
        }

        let mut min_level = usize::max_value();
        let mut was_found = false;

        if let (Some(order_source), Some(order_target)) = (
            self.node_to_order.get(&source),
            self.node_to_order.get(&target),
        ) {
            for order_source in order_source.iter() {
                for order_target in order_target.iter() {
                    if order_source.pre <= order_target.pre
                        && order_target.post <= order_source.post
                    {
                        // check the level
                        if let (Some(source_level), Some(target_level)) =
                            (order_source.level.to_usize(), order_target.level.to_usize())
                        {
                            if source_level <= target_level {
                                was_found = true;
                                min_level = std::cmp::min(target_level - source_level, min_level);
                            }
                        }
                    }
                }
            }
        }

        if was_found {
            Some(min_level)
        } else {
            None
        }
    }
    fn is_connected(
        &self,
        source: NodeID,
        target: NodeID,
        min_distance: usize,
        max_distance: std::ops::Bound<usize>,
    ) -> bool {
        if let (Some(order_source), Some(order_target)) = (
            self.node_to_order.get(&source),
            self.node_to_order.get(&target),
        ) {
            let max_distance = match max_distance {
                Unbounded => usize::max_value(),
                Included(max_distance) => max_distance,
                Excluded(max_distance) => max_distance - 1,
            };

            for order_source in order_source.iter() {
                for order_target in order_target.iter() {
                    if order_source.pre <= order_target.pre
                        && order_target.post <= order_source.post
                    {
                        // check the level
                        if let (Some(source_level), Some(target_level)) =
                            (order_source.level.to_usize(), order_target.level.to_usize())
                        {
                            if source_level <= target_level {
                                let diff_level = target_level - source_level;
                                return min_distance <= diff_level && diff_level <= max_distance;
                            }
                        }
                    }
                }
            }
        }

        false
    }

    fn copy(
        &mut self,
        node_annos: &dyn AnnotationStorage<NodeID>,
        orig: &dyn GraphStorage,
    ) -> Result<()> {
        self.clear()?;

        // find all roots of the component
        let mut roots: FxHashSet<NodeID> = FxHashSet::default();
        let nodes: Box<dyn Iterator<Item = Match>> =
            node_annos.exact_anno_search(Some(&NODE_NAME_KEY.ns), &NODE_NAME_KEY.name, None.into());

        // first add all nodes that are a source of an edge as possible roots
        for m in nodes {
            let m: Match = m;
            let n = m.node;
            // insert all nodes to the root candidate list which are part of this component
            if orig.get_outgoing_edges(n).next().is_some() {
                roots.insert(n);
            }
        }

        let nodes: Box<dyn Iterator<Item = Match>> =
            node_annos.exact_anno_search(Some(&NODE_NAME_KEY.ns), &NODE_NAME_KEY.name, None.into());
        for m in nodes {
            let m: Match = m;

            let source = m.node;

            let out_edges = orig.get_outgoing_edges(source);
            for target in out_edges {
                // remove the nodes that have an incoming edge from the root list
                roots.remove(&target);

                // add the edge annotations for this edge
                let e = Edge { source, target };
                let edge_annos = orig.get_anno_storage().get_annotations_for_item(&e);
                for a in edge_annos {
                    self.annos.insert(e.clone(), a)?;
                }
            }
        }

        let mut current_order = OrderT::zero();
        // traverse the graph for each sub-component
        for start_node in &roots {
            let mut last_distance: usize = 0;

            let mut node_stack: NStack<OrderT, LevelT> = NStack::new();

            PrePostOrderStorage::enter_node(
                &mut current_order,
                *start_node,
                LevelT::zero(),
                &mut node_stack,
            );

            let dfs =
                CycleSafeDFS::new(orig.as_edgecontainer(), *start_node, 1, usize::max_value());
            for step in dfs {
                let step: DFSStep = step;
                if step.distance <= last_distance {
                    // Neighbor node, the last subtree was iterated completely, thus the last node
                    // can be assigned a post-order.
                    // The parent node must be at the top of the node stack,
                    // thus exit every node which comes after the parent node.
                    // Distance starts with 0 but the stack size starts with 1.
                    while node_stack.len() > step.distance {
                        self.exit_node(&mut current_order, &mut node_stack);
                    }
                }
                // set pre-order
                if let Some(dist) = LevelT::from_usize(step.distance) {
                    PrePostOrderStorage::enter_node(
                        &mut current_order,
                        step.node,
                        dist,
                        &mut node_stack,
                    );
                }
                last_distance = step.distance;
            } // end for each DFS step

            while !node_stack.is_empty() {
                self.exit_node(&mut current_order, &mut node_stack);
            }
        } // end for each root

        // there must be an entry in the vector for all possible order values
        self.order_to_node
            .resize(current_order.to_usize().unwrap_or(0), OrderVecEntry::None);
        for (node, orders_for_node) in &self.node_to_order {
            for order in orders_for_node {
                if let Some(pre) = order.pre.to_usize() {
                    self.order_to_node[pre] = OrderVecEntry::Pre {
                        post: order.post.clone(),
                        level: order.level.clone(),
                        node: *node,
                    };
                }
                if let Some(post) = order.post.to_usize() {
                    self.order_to_node[post] = OrderVecEntry::Post {
                        pre: order.pre.clone(),
                        level: order.level.clone(),
                        node: *node,
                    };
                }
            }
        }

        self.stats = orig.get_statistics().cloned();
        self.annos.calculate_statistics();

        self.node_to_order.shrink_to_fit();

        Ok(())
    }

    fn as_edgecontainer(&self) -> &dyn EdgeContainer {
        self
    }
}