1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use {
    crate::{align_down, align_up, error::MapError},
    alloc::sync::Arc,
    core::{
        convert::TryFrom as _,
        ptr::{copy_nonoverlapping, NonNull},
        // sync::atomic::{AtomicU8, Ordering::*},
    },
    gpu_alloc_types::{MappedMemoryRange, MemoryDevice, MemoryPropertyFlags},
};

#[derive(Debug)]
struct Relevant;

impl Drop for Relevant {
    fn drop(&mut self) {
        report_error_on_drop!("Memory block wasn't deallocated");
    }
}

/// Memory block allocated by `GpuAllocator`.
#[derive(Debug)]
pub struct MemoryBlock<M> {
    memory_type: u32,
    props: MemoryPropertyFlags,
    offset: u64,
    size: u64,
    atom_mask: u64,
    mapped: bool,
    flavor: MemoryBlockFlavor<M>,
    relevant: Relevant,
}

impl<M> MemoryBlock<M> {
    pub(crate) fn new(
        memory_type: u32,
        props: MemoryPropertyFlags,
        offset: u64,
        size: u64,
        atom_mask: u64,
        flavor: MemoryBlockFlavor<M>,
    ) -> Self {
        isize::try_from(atom_mask).expect("`atom_mask` is too large");
        MemoryBlock {
            memory_type,
            props,
            offset,
            size,
            atom_mask,
            flavor,
            mapped: false,
            relevant: Relevant,
        }
    }

    pub(crate) fn deallocate(self) -> MemoryBlockFlavor<M> {
        core::mem::forget(self.relevant);
        self.flavor
    }
}

unsafe impl<M> Sync for MemoryBlock<M> where M: Sync {}
unsafe impl<M> Send for MemoryBlock<M> where M: Send {}

#[derive(Debug)]
pub(crate) enum MemoryBlockFlavor<M> {
    Dedicated {
        memory: M,
    },
    Linear {
        chunk: u64,
        ptr: Option<NonNull<u8>>,
        memory: Arc<M>,
    },
    Buddy {
        chunk: usize,
        index: usize,
        ptr: Option<NonNull<u8>>,
        memory: Arc<M>,
    },
    #[cfg(feature = "freelist")]
    FreeList {
        chunk: u64,
        ptr: Option<NonNull<u8>>,
        memory: Arc<M>,
    },
}

impl<M> MemoryBlock<M> {
    /// Returns reference to parent memory object.
    #[inline(always)]
    pub fn memory(&self) -> &M {
        match &self.flavor {
            MemoryBlockFlavor::Dedicated { memory } => memory,
            MemoryBlockFlavor::Buddy { memory, .. } => &**memory,
            MemoryBlockFlavor::Linear { memory, .. } => &**memory,

            #[cfg(feature = "freelist")]
            MemoryBlockFlavor::FreeList { memory, .. } => &**memory,
        }
    }

    /// Returns offset in bytes from start of memory object to start of this block.
    #[inline(always)]
    pub fn offset(&self) -> u64 {
        self.offset
    }

    /// Returns size of this memory block.
    #[inline(always)]
    pub fn size(&self) -> u64 {
        self.size
    }

    /// Returns memory property flags for parent memory object.
    #[inline(always)]
    pub fn props(&self) -> MemoryPropertyFlags {
        self.props
    }

    /// Returns index of type of parent memory object.
    #[inline(always)]
    pub fn memory_type(&self) -> u32 {
        self.memory_type
    }

    /// Returns pointer to mapped memory range of this block.
    /// This blocks becomes mapped.
    ///
    /// The user of returned pointer must guarantee that any previously submitted command that writes to this range has completed
    /// before the host reads from or writes to that range,
    /// and that any previously submitted command that reads from that range has completed
    /// before the host writes to that region.
    /// If the device memory was allocated without the `HOST_COHERENT` property flag set,
    /// these guarantees must be made for an extended range:
    /// the user must round down the start of the range to the nearest multiple of `non_coherent_atom_size`,
    /// and round the end of the range up to the nearest multiple of `non_coherent_atom_size`.
    ///
    /// # Panics
    ///
    /// This function panics if block is currently mapped.
    ///
    /// # Safety
    ///
    /// `block` must have been allocated from specified `device`.
    #[inline(always)]
    pub unsafe fn map(
        &mut self,
        device: &impl MemoryDevice<M>,
        offset: u64,
        size: usize,
    ) -> Result<NonNull<u8>, MapError> {
        let size_u64 = u64::try_from(size).expect("`size` doesn't fit device address space");
        assert!(offset < self.size, "`offset` is out of memory block bounds");
        assert!(
            size_u64 <= self.size - offset,
            "`offset + size` is out of memory block bounds"
        );

        let ptr = match &mut self.flavor {
            MemoryBlockFlavor::Dedicated { memory } => {
                let end = align_up(offset + size_u64, self.atom_mask)
                    .expect("mapping end doesn't fit device address space");
                let aligned_offset = align_down(offset, self.atom_mask);

                if !acquire_mapping(&mut self.mapped) {
                    return Err(MapError::AlreadyMapped);
                }
                let result =
                    device.map_memory(memory, self.offset + aligned_offset, end - aligned_offset);

                match result {
                    // the overflow is checked in `Self::new()`
                    Ok(ptr) => {
                        let ptr_offset = (offset - aligned_offset) as isize;
                        ptr.as_ptr().offset(ptr_offset)
                    }
                    Err(err) => {
                        release_mapping(&mut self.mapped);
                        return Err(err.into());
                    }
                }
            }

            MemoryBlockFlavor::Linear { ptr: Some(ptr), .. }
            | MemoryBlockFlavor::Buddy { ptr: Some(ptr), .. } => {
                if !acquire_mapping(&mut self.mapped) {
                    return Err(MapError::AlreadyMapped);
                }
                let offset_isize = isize::try_from(offset)
                    .expect("Buddy and linear block should fit host address space");
                ptr.as_ptr().offset(offset_isize)
            }
            #[cfg(feature = "freelist")]
            MemoryBlockFlavor::FreeList { ptr: Some(ptr), .. } => {
                if !acquire_mapping(&mut self.mapped) {
                    return Err(MapError::AlreadyMapped);
                }
                let offset_isize = isize::try_from(offset)
                    .expect("Buddy and linear block should fit host address space");
                ptr.as_ptr().offset(offset_isize)
            }
            _ => return Err(MapError::NonHostVisible),
        };

        Ok(NonNull::new_unchecked(ptr))
    }

    /// Unmaps memory range of this block that was previously mapped with `Block::map`.
    /// This block becomes unmapped.
    ///
    /// # Panics
    ///
    /// This function panics if this block is not currently mapped.
    ///
    /// # Safety
    ///
    /// `block` must have been allocated from specified `device`.
    #[inline(always)]
    pub unsafe fn unmap(&mut self, device: &impl MemoryDevice<M>) -> bool {
        if !release_mapping(&mut self.mapped) {
            return false;
        }
        match &mut self.flavor {
            MemoryBlockFlavor::Dedicated { memory } => {
                device.unmap_memory(memory);
            }
            MemoryBlockFlavor::Linear { .. } => {}
            MemoryBlockFlavor::Buddy { .. } => {}

            #[cfg(feature = "freelist")]
            MemoryBlockFlavor::FreeList { .. } => {}
        }
        true
    }

    /// Transiently maps block memory range and copies specified data
    /// to the mapped memory range.
    ///
    /// # Panics
    ///
    /// This function panics if block is currently mapped.
    ///
    /// # Safety
    ///
    /// `block` must have been allocated from specified `device`.
    /// The caller must guarantee that any previously submitted command that reads or writes to this range has completed.
    #[inline(always)]
    pub unsafe fn write_bytes(
        &mut self,
        device: &impl MemoryDevice<M>,
        offset: u64,
        data: &[u8],
    ) -> Result<(), MapError> {
        let size = data.len();
        let ptr = self.map(device, offset, size)?;

        copy_nonoverlapping(data.as_ptr(), ptr.as_ptr(), size);
        let result = if !self.coherent() {
            let aligned_offset = align_down(offset, self.atom_mask);
            let end = align_up(offset + data.len() as u64, self.atom_mask).unwrap();

            device.flush_memory_ranges(&[MappedMemoryRange {
                memory: self.memory(),
                offset: self.offset + aligned_offset,
                size: end - aligned_offset,
            }])
        } else {
            Ok(())
        };

        self.unmap(device);
        result.map_err(Into::into)
    }

    /// Transiently maps block memory range and copies specified data
    /// from the mapped memory range.
    ///
    /// # Panics
    ///
    /// This function panics if block is currently mapped.
    ///
    /// # Safety
    ///
    /// `block` must have been allocated from specified `device`.
    /// The caller must guarantee that any previously submitted command that reads to this range has completed.
    #[inline(always)]
    pub unsafe fn read_bytes(
        &mut self,
        device: &impl MemoryDevice<M>,
        offset: u64,
        data: &mut [u8],
    ) -> Result<(), MapError> {
        #[cfg(feature = "tracing")]
        {
            if !self.cached() {
                tracing::warn!("Reading from non-cached memory may be slow. Consider allocating HOST_CACHED memory block for host reads.")
            }
        }

        let size = data.len();
        let ptr = self.map(device, offset, size)?;
        let result = if !self.coherent() {
            let aligned_offset = align_down(offset, self.atom_mask);
            let end = align_up(offset + data.len() as u64, self.atom_mask).unwrap();

            device.invalidate_memory_ranges(&[MappedMemoryRange {
                memory: self.memory(),
                offset: self.offset + aligned_offset,
                size: end - aligned_offset,
            }])
        } else {
            Ok(())
        };
        if result.is_ok() {
            copy_nonoverlapping(ptr.as_ptr(), data.as_mut_ptr(), size);
        }

        self.unmap(device);
        result.map_err(Into::into)
    }

    fn coherent(&self) -> bool {
        self.props.contains(MemoryPropertyFlags::HOST_COHERENT)
    }

    #[cfg(feature = "tracing")]
    fn cached(&self) -> bool {
        self.props.contains(MemoryPropertyFlags::HOST_CACHED)
    }
}

fn acquire_mapping(mapped: &mut bool) -> bool {
    if *mapped {
        false
    } else {
        *mapped = true;
        true
    }
}

fn release_mapping(mapped: &mut bool) -> bool {
    if *mapped {
        *mapped = false;
        true
    } else {
        false
    }
}