1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
//! A pure-Rust library to work with GPT partition tables.
//!
//! It provides support for manipulating (R/W) GPT headers and partition
//! tables. Raw disk devices as well as disk images are supported.
//!
//! ```rust,no_run
//! extern crate gpt;
//!
//! fn inspect_disk() {
//!     let diskpath = std::path::Path::new("/dev/sdz");
//!     let cfg = gpt::GptConfig::new().writable(false);
//!
//!     let disk = cfg.open(diskpath).expect("failed to open disk");
//!
//!     println!("Disk header: {:#?}", disk.primary_header());
//!     println!("Partition layout: {:#?}", disk.partitions());
//! }
//!
//! fn create_partition() {
//!     let diskpath = std::path::Path::new("/tmp/chris.img");
//!     let cfg = gpt::GptConfig::new().writable(true).initialized(true);
//!     let mut disk = cfg.open(diskpath).expect("failed to open disk");
//!     let result = disk.add_partition(
//!         "rust_partition",
//!         100,
//!         gpt::partition_types::LINUX_FS,
//!         0,
//!     );
//!     disk.write().unwrap();
//! }
//! ```

#![deny(missing_docs)]

use log::*;
use std::collections::BTreeMap;
use std::io::Write;
use std::{fs, io, path};

#[macro_use]
mod macros;
pub mod disk;
pub mod header;
pub mod mbr;
pub mod partition;
pub mod partition_types;

/// Configuration options to open a GPT disk.
#[derive(Debug, Eq, PartialEq)]
pub struct GptConfig {
    /// Logical block size.
    lb_size: disk::LogicalBlockSize,
    /// Whether to open a GPT partition table in writable mode.
    writable: bool,
    /// Whether to expect and parse an initialized disk image.
    initialized: bool,
}

impl GptConfig {
    // TODO(lucab): complete support for skipping backup
    // header, etc, then expose all config knobs here.

    /// Create a new default configuration.
    pub fn new() -> Self {
        GptConfig::default()
    }

    /// Whether to open a GPT partition table in writable mode.
    pub fn writable(mut self, writable: bool) -> Self {
        self.writable = writable;
        self
    }

    /// Whether to assume an initialized GPT disk and read its
    /// partition table on open.
    pub fn initialized(mut self, initialized: bool) -> Self {
        self.initialized = initialized;
        self
    }

    /// Size of logical blocks (sectors) for this disk.
    pub fn logical_block_size(mut self, lb_size: disk::LogicalBlockSize) -> Self {
        self.lb_size = lb_size;
        self
    }

    /// Open the GPT disk at the given path and inspect it according
    /// to configuration options.
    pub fn open(self, diskpath: &path::Path) -> io::Result<GptDisk> {
        // Uninitialized disk, no headers/table to parse.
        if !self.initialized {
            let file = fs::OpenOptions::new()
                .write(self.writable)
                .read(true)
                .open(diskpath)?;
            let empty = GptDisk {
                config: self,
                file,
                guid: uuid::Uuid::new_v4(),
                path: diskpath.to_path_buf(),
                primary_header: None,
                backup_header: None,
                partitions: BTreeMap::new(),
            };
            return Ok(empty);
        }

        // Proper GPT disk, fully inspect its layout.
        let mut file = fs::OpenOptions::new()
            .write(self.writable)
            .read(true)
            .open(diskpath)?;
        let h1 = header::read_primary_header(&mut file, self.lb_size)?;
        let h2 = header::read_backup_header(&mut file, self.lb_size)?;
        let table = partition::file_read_partitions(&mut file, &h1, self.lb_size)?;
        let disk = GptDisk {
            config: self,
            file,
            guid: h1.disk_guid,
            path: diskpath.to_path_buf(),
            primary_header: Some(h1),
            backup_header: Some(h2),
            partitions: table,
        };
        debug!("disk: {:?}", disk);
        Ok(disk)
    }
}

impl Default for GptConfig {
    fn default() -> Self {
        Self {
            lb_size: disk::DEFAULT_SECTOR_SIZE,
            initialized: true,
            writable: false,
        }
    }
}

/// A file-backed GPT disk.
#[derive(Debug)]
pub struct GptDisk {
    config: GptConfig,
    file: fs::File,
    guid: uuid::Uuid,
    path: path::PathBuf,
    primary_header: Option<header::Header>,
    backup_header: Option<header::Header>,
    partitions: BTreeMap<u32, partition::Partition>,
}

impl GptDisk {
    /// Add another partition to this disk.  This tries to find
    /// the optimum partition location with the lowest block device.
    /// Returns the new partition id if there was sufficient room
    /// to add the partition. Size is specified in bytes.
    pub fn add_partition(
        &mut self,
        name: &str,
        size: u64,
        part_type: partition_types::Type,
        flags: u64,
    ) -> io::Result<u32> {
        let size_lba = match size.checked_div(self.config.lb_size.into()) {
            Some(s) => s,
            None => {
                return Err(io::Error::new(
                    io::ErrorKind::Other,
                    format!(
                        "size must be greater than {} which is the logical block size.",
                        self.config.lb_size
                    ),
                ));
            }
        };
        // Find the lowest lba that is larger than size.
        let free_sections = self.find_free_sectors();
        for (starting_lba, length) in free_sections {
            if length >= size_lba {
                // Found our free slice.
                let partition_id = self.find_next_partition_id();
                debug!(
                    "Adding partition id: {} {:?}.  first_lba: {} last_lba: {}",
                    partition_id,
                    part_type,
                    starting_lba,
                    starting_lba + size_lba as u64
                );
                let part = partition::Partition {
                    part_type_guid: part_type,
                    part_guid: uuid::Uuid::new_v4(),
                    first_lba: starting_lba,
                    last_lba: starting_lba + size_lba as u64,
                    flags,
                    name: name.to_string(),
                };
                if let Some(p) = self.partitions.insert(partition_id, part.clone()) {
                    debug!("Replacing\n{}\nwith\n{}", p, part);
                }
                return Ok(partition_id);
            }
        }

        Err(io::Error::new(
            io::ErrorKind::Other,
            "Unable to find enough space on drive",
        ))
    }

    /// Find free space on the disk.
    /// Returns a tuple of (starting_lba, length in lba's).
    pub fn find_free_sectors(&self) -> Vec<(u64, u64)> {
        if let Some(header) = self.primary_header().or_else(|| self.backup_header()) {
            trace!("first_usable: {}", header.first_usable);
            let mut disk_positions = vec![header.first_usable + 1];
            for part in self.partitions().iter().filter(|p| p.1.is_used()) {
                trace!("partition: ({}, {})", part.1.first_lba, part.1.last_lba);
                disk_positions.push(part.1.first_lba);
                disk_positions.push(part.1.last_lba);
            }
            disk_positions.push(header.last_usable - 1);
            trace!("last_usable: {}", header.last_usable);
            disk_positions.sort();

            return disk_positions
                // Walk through the LBA's in chunks of 2 (ending, starting).
                .chunks(2)
                // Add 1 to the ending and then subtract the starting.
                .map(|p| (p[0] + 1, p[1].saturating_sub(p[0])))
                .collect();
        }
        // No primary header. Return nothing.
        vec![]
    }

    /// Find next highest partition id.
    pub fn find_next_partition_id(&self) -> u32 {
        match self
            .partitions()
            .iter()
            // Skip unused partitions.
            .filter(|p| p.1.is_used())
            // Find the maximum id.
            .max_by_key(|x| x.0)
        {
            Some(i) => i.0 + 1,
            // Partitions start at 1.
            None => 1,
        }
    }

    /// Retrieve primary header, if any.
    pub fn primary_header(&self) -> Option<&header::Header> {
        self.primary_header.as_ref()
    }

    /// Retrieve backup header, if any.
    pub fn backup_header(&self) -> Option<&header::Header> {
        self.backup_header.as_ref()
    }

    /// Retrieve partition entries.
    pub fn partitions(&self) -> &BTreeMap<u32, partition::Partition> {
        &self.partitions
    }

    /// Retrieve disk UUID.
    pub fn guid(&self) -> &uuid::Uuid {
        &self.guid
    }

    /// Retrieve disk logical block size.
    pub fn logical_block_size(&self) -> &disk::LogicalBlockSize {
        &self.config.lb_size
    }

    /// Update disk UUID.
    ///
    /// If no UUID is specified, a new random one is generated.
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_guid(&mut self, uuid: Option<uuid::Uuid>) -> io::Result<&Self> {
        let guid = match uuid {
            Some(u) => u,
            None => {
                let u = uuid::Uuid::new_v4();
                debug!("Generated random uuid: {}", u);
                u
            }
        };
        self.guid = guid;
        Ok(self)
    }

    /// Update current partition table.
    ///
    /// No changes are recorded to disk until `write()` is called.
    pub fn update_partitions(
        &mut self,
        pp: BTreeMap<u32, partition::Partition>,
    ) -> io::Result<&Self> {
        // TODO(lucab): validate partitions.
        let bak = header::find_backup_lba(&mut self.file, self.config.lb_size)?;
        let h1 = header::Header::compute_new(true, &pp, self.guid, bak)?;
        let h2 = header::Header::compute_new(false, &pp, self.guid, bak)?;
        self.primary_header = Some(h1);
        self.backup_header = Some(h2);
        self.partitions = pp;
        self.config.initialized = true;
        Ok(self)
    }

    /// Persist state to disk, consuming this disk object.
    ///
    /// This is a destructive action, as it overwrite headers and
    /// partitions entries on disk. All writes are flushed to disk
    /// before returning the underlying `File` object.
    pub fn write(mut self) -> io::Result<fs::File> {
        if !self.config.writable {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                "disk not opened in writable mode",
            ));
        }
        if !self.config.initialized {
            return Err(io::Error::new(io::ErrorKind::Other, "disk not initialized"));
        }
        debug!("Computing new headers");
        trace!("old primary header: {:?}", self.primary_header);
        trace!("old backup header: {:?}", self.backup_header);
        let bak = header::find_backup_lba(&mut self.file, self.config.lb_size)?;
        trace!("old backup lba: {}", bak);
        for partition in self.partitions().iter().filter(|p| p.1.is_used()) {
            partition.1.write(
                &self.path,
                u64::from(partition.0.checked_sub(1).unwrap_or_else(|| 0)),
                self.primary_header.clone().unwrap().part_start,
                self.config.lb_size,
            )?;
        }
        let new_backup_header =
            header::Header::compute_new(false, &self.partitions, self.guid, bak)?;
        let new_primary_header =
            header::Header::compute_new(true, &self.partitions, self.guid, bak)?;
        debug!("Writing backup header");
        new_backup_header.write_backup(&mut self.file, self.config.lb_size)?;
        debug!("Writing primary header");
        new_primary_header.write_primary(&mut self.file, self.config.lb_size)?;
        trace!("new primary header: {:?}", new_primary_header);
        trace!("new backup header: {:?}", new_backup_header);

        self.file.flush()?;
        self.primary_header = Some(new_primary_header.clone());
        self.backup_header = Some(new_backup_header);

        Ok(self.file)
    }
}