1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
use std::prelude::v1::*;

use crate::nanos::Nanos;
#[cfg(feature = "jitter")]
use rand::distributions::uniform::{SampleBorrow, SampleUniform, UniformInt, UniformSampler};
#[cfg(feature = "jitter")]
use rand::distributions::{Distribution, Uniform};
#[cfg(feature = "jitter")]
use rand::{thread_rng, Rng};
use std::ops::Add;
use std::time::Duration;

#[cfg(feature = "std")]
use std::time::Instant;

/// An interval specification for deviating from the nominal wait time.
///
/// Jitter can be added to wait time `Duration`s to ensure that multiple tasks waiting on the same
/// rate limit don't wake up at the same time and attempt to measure at the same time.
///
/// Methods on rate limiters that work asynchronously like
/// [`DirectRateLimiter.until_ready_with_jitter`](struct.DirectRateLimiter.html#method.until_ready_with_jitter)
/// exist to automatically apply jitter to wait periods, thereby reducing the chance of a
/// thundering herd problem.
///
/// # Examples
///
/// Jitter can be added manually to a `Duration`:
///
/// ```rust
/// # #[cfg(feature = "jitter")]
/// # fn main() {
/// # use governor::Jitter;
/// # use std::time::Duration;
/// let reference = Duration::from_secs(24);
/// let jitter = Jitter::new(Duration::from_secs(1), Duration::from_secs(1));
/// let result = jitter + reference;
/// assert!(result >= reference + Duration::from_secs(1));
/// assert!(result < reference + Duration::from_secs(2))
/// # }
/// # #[cfg(not(feature = "jitter"))]
/// # fn main() {}
/// ```
///
/// In a `std` build (the default), Jitter can also be added to an `Instant`:
///
/// ```rust
/// # #[cfg(all(feature = "jitter", feature = "std"))]
/// # fn main() {
/// # use governor::Jitter;
/// # use std::time::{Duration, Instant};
/// let reference = Instant::now();
/// let jitter = Jitter::new(Duration::from_secs(1), Duration::from_secs(1));
/// let result = jitter + reference;
/// assert!(result >= reference + Duration::from_secs(1));
/// assert!(result < reference + Duration::from_secs(2))
/// # }
/// # #[cfg(any(not(feature = "jitter"), not(feature = "std")))] fn main() {}
/// ```
#[derive(Debug, PartialEq, Default, Clone, Copy)]
#[cfg_attr(feature = "docs", doc(cfg(jitter)))]
pub struct Jitter {
    min: Nanos,
    max: Nanos,
}

impl Jitter {
    #[cfg(feature = "std")]
    /// The "empty" jitter interval - no jitter at all.
    pub(crate) const NONE: Jitter = Jitter {
        min: Nanos::new(0),
        max: Nanos::new(0),
    };

    /// Constructs a new Jitter interval, waiting at most a duration of `max`.
    ///
    /// ```rust
    /// # use std::time::Duration;
    /// # use governor::Jitter;
    /// let jitter = Jitter::up_to(Duration::from_secs(20));
    /// let now = Duration::from_secs(0);
    /// assert!(jitter + now <= Duration::from_secs(20)); // always.
    /// ```
    #[cfg(feature = "jitter")]
    pub fn up_to(max: Duration) -> Jitter {
        Jitter {
            min: Nanos::from(0),
            max: max.into(),
        }
    }

    /// Constructs a new Jitter interval, waiting at least `min` and at most `min+interval`.
    #[cfg(feature = "jitter")]
    pub fn new(min: Duration, interval: Duration) -> Jitter {
        let min: Nanos = min.into();
        let max: Nanos = min + Nanos::from(interval);
        Jitter { min, max }
    }

    /// Returns a random amount of jitter within the configured interval.
    #[cfg(feature = "jitter")]
    pub(crate) fn get(&self) -> Nanos {
        if self.min == self.max {
            return self.min;
        }
        let uniform = Uniform::new(self.min, self.max);
        uniform.sample(&mut thread_rng())
    }

    /// Returns a random amount of jitter within the configured interval.
    #[cfg(not(feature = "jitter"))]
    pub(crate) fn get(&self) -> Nanos {
        self.min
    }
}

/// A random distribution of nanoseconds
#[cfg(feature = "jitter")]
#[derive(Clone, Copy, Debug)]
pub struct UniformJitter(UniformInt<u64>);

#[cfg(feature = "jitter")]
impl UniformSampler for UniformJitter {
    type X = Nanos;

    fn new<B1, B2>(low: B1, high: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        UniformJitter(UniformInt::new(
            low.borrow().as_u64(),
            high.borrow().as_u64(),
        ))
    }

    fn new_inclusive<B1, B2>(low: B1, high: B2) -> Self
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        UniformJitter(UniformInt::new_inclusive(
            low.borrow().as_u64(),
            high.borrow().as_u64(),
        ))
    }

    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
        Nanos::from(self.0.sample(rng))
    }
}

#[cfg(feature = "jitter")]
impl SampleUniform for Nanos {
    type Sampler = UniformJitter;
}

impl Add<Duration> for Jitter {
    type Output = Duration;

    fn add(self, rhs: Duration) -> Duration {
        let amount: Duration = self.get().into();
        rhs + amount
    }
}

impl Add<Nanos> for Jitter {
    type Output = Nanos;

    fn add(self, rhs: Nanos) -> Nanos {
        rhs + self.get()
    }
}

#[cfg(feature = "std")]
impl Add<Instant> for Jitter {
    type Output = Instant;

    fn add(self, rhs: Instant) -> Instant {
        let amount: Duration = self.get().into();
        rhs + amount
    }
}

#[cfg(all(feature = "jitter", test))]
mod test {
    use super::*;

    #[test]
    fn jitter_impl_coverage() {
        let basic = Jitter::up_to(Duration::from_secs(20));
        let verbose = Jitter::new(Duration::from_secs(0), Duration::from_secs(20));
        assert_eq!(basic, verbose);
    }

    #[test]
    fn uniform_sampler_coverage() {
        let low = Duration::from_secs(0);
        let high = Duration::from_secs(20);
        let sampler = UniformJitter::new_inclusive(Nanos::from(low), Nanos::from(high));
        assert!(format!("{:?}", sampler).len() > 0);
        assert!(format!("{:?}", sampler.clone()).len() > 0);
    }
}