1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
use std::prelude::v1::*;

use crate::nanos::Nanos;
use crate::state::StateStore;
use crate::{clock, NegativeMultiDecision, Quota};
use std::num::NonZeroU32;
use std::time::Duration;
use std::{cmp, fmt};

#[cfg(feature = "std")]
use crate::Jitter;

/// A negative rate-limiting outcome.
///
/// `NotUntil`'s methods indicate when a caller can expect the next positive
/// rate-limiting result.
#[derive(Debug, PartialEq)]
pub struct NotUntil<'a, P: clock::Reference> {
    limiter: &'a Gcra,
    tat: Nanos,
    start: P,
}

impl<'a, P: clock::Reference> NotUntil<'a, P> {
    /// Returns the earliest time at which a decision could be
    /// conforming (excluding conforming decisions made by the Decider
    /// that are made in the meantime).
    pub fn earliest_possible(&self) -> P {
        let tat: Nanos = self.tat;
        self.start + tat
    }

    /// Returns the minimum amount of time from the time that the
    /// decision was made that must pass before a
    /// decision can be conforming.
    ///
    /// If the time of the next expected positive result is in the past,
    /// `wait_time_from` returns a zero `Duration`.
    pub fn wait_time_from(&self, from: P) -> Duration {
        let earliest = self.earliest_possible();
        earliest.duration_since(earliest.min(from)).into()
    }

    #[cfg(feature = "std")] // not used unless we use Instant-compatible clocks.
    pub(crate) fn earliest_possible_with_offset(&self, jitter: Jitter) -> P {
        let tat = jitter + self.tat;
        self.start + tat
    }

    #[cfg(feature = "std")] // not used unless we use Instant-compatible clocks.
    pub(crate) fn wait_time_with_offset(&self, from: P, jitter: Jitter) -> Duration {
        let earliest = self.earliest_possible_with_offset(jitter);
        earliest.duration_since(earliest.min(from)).into()
    }
}

impl<'a, P: clock::Reference> fmt::Display for NotUntil<'a, P> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "rate-limited until {:?}", self.start + self.tat)
    }
}

#[derive(Debug, PartialEq)]
pub(crate) struct Gcra {
    // The "weight" of a single packet in units of time.
    t: Nanos,

    // The "capacity" of the bucket.
    tau: Nanos,
}

impl Gcra {
    pub(crate) fn new(quota: Quota) -> Self {
        let tau: Nanos = (quota.replenish_1_per * quota.max_burst.get()).into();
        let t: Nanos = quota.replenish_1_per.into();
        Gcra { tau, t }
    }

    /// Computes and returns a new ratelimiter state if none exists yet.
    fn starting_state(&self, t0: Nanos) -> Nanos {
        t0 + self.t
    }

    /// Tests a single cell against the rate limiter state and updates it at the given key.
    pub(crate) fn test_and_update<K, P: clock::Reference>(
        &self,
        start: P,
        key: &K,
        state: &impl StateStore<Key = K>,
        t0: P,
    ) -> Result<(), NotUntil<P>> {
        let t0 = t0.duration_since(start);
        let tau = self.tau;
        let t = self.t;
        state.measure_and_replace(key, |tat| {
            let tat = tat.unwrap_or_else(|| self.starting_state(t0));
            let earliest_time = tat.saturating_sub(tau);
            if t0 < earliest_time {
                Err(NotUntil {
                    limiter: self,
                    tat: earliest_time,
                    start,
                })
            } else {
                Ok(((), cmp::max(tat, t0) + t))
            }
        })
    }

    /// Tests whether all `n` cells could be accommodated and updates the rate limiter state, if so.
    pub(crate) fn test_n_all_and_update<K, P: clock::Reference>(
        &self,
        start: P,
        key: &K,
        n: NonZeroU32,
        state: &impl StateStore<Key = K>,
        t0: P,
    ) -> Result<(), NegativeMultiDecision<NotUntil<P>>> {
        let t0 = t0.duration_since(start);
        let tau = self.tau;
        let t = self.t;
        let additional_weight = t * (n.get() - 1) as u64;

        // check that we can allow enough cells through. Note that `additional_weight` is the
        // value of the cells *in addition* to the first cell - so add that first cell back.
        if additional_weight + t > tau {
            return Err(NegativeMultiDecision::InsufficientCapacity(
                (tau.as_u64() / t.as_u64()) as u32,
            ));
        }
        state.measure_and_replace(key, |tat| {
            let tat = tat.unwrap_or_else(|| self.starting_state(t0));
            let earliest_time = (tat + additional_weight).saturating_sub(tau);
            if t0 < earliest_time {
                Err(NegativeMultiDecision::BatchNonConforming(
                    n.get(),
                    NotUntil {
                        limiter: self,
                        tat: earliest_time,
                        start,
                    },
                ))
            } else {
                Ok(((), cmp::max(tat, t0) + t + additional_weight))
            }
        })
    }
}