1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use crate::lib::*;
use crate::nanos::Nanos;
use crate::{clock, NegativeMultiDecision, Quota};

pub(crate) struct Tat(AtomicU64);

impl Tat {
    fn new(tat: Nanos) -> Tat {
        Tat(AtomicU64::new(tat.into()))
    }

    fn measure_and_replace<T, F, E>(&self, f: F) -> Result<T, E>
    where
        F: Fn(Nanos) -> Result<(T, Nanos), E>,
    {
        let mut prev = self.0.load(Ordering::Acquire);
        let mut decision = f(prev.into());
        while let Ok((result, new_data)) = decision {
            match self.0.compare_exchange_weak(
                prev,
                new_data.into(),
                Ordering::Release,
                Ordering::Relaxed,
            ) {
                Ok(_) => return Ok(result),
                Err(next_prev) => prev = next_prev,
            }
            decision = f(prev.into());
        }
        // This map shouldn't be needed, as we only get here in the error case, but the compiler
        // can't see it.
        decision.map(|(result, _)| result)
    }
}

impl Debug for Tat {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        let d = Duration::from_nanos(self.0.load(Ordering::Relaxed));
        write!(f, "Tat({:?})", d)
    }
}

/// A negative rate-limiting outcome.
///
/// `NotUntil`'s methods indicate when a caller can expect the next positive
/// rate-limiting result.
#[derive(Debug, PartialEq)]
pub struct NotUntil<'a, P: clock::Reference> {
    limiter: &'a GCRA<P>,
    tat: Nanos,
}

impl<'a, P: clock::Reference> NotUntil<'a, P> {
    /// Returns the earliest time at which a decision could be
    /// conforming (excluding conforming decisions made by the Decider
    /// that are made in the meantime).
    pub fn earliest_possible(&self) -> P {
        let tat: Duration = self.tat.into();
        self.limiter.start + tat
    }

    /// Returns the minimum amount of time from the time that the
    /// decision was made that must pass before a
    /// decision can be conforming.
    ///
    /// If the time of the next expected positive result is in the past,
    /// `wait_time_from` returns a zero `Duration`.
    pub fn wait_time_from(&self, from: P) -> Duration {
        let earliest = self.earliest_possible();
        earliest.duration_since(earliest.min(from))
    }
}

impl<'a, P: clock::Reference> fmt::Display for NotUntil<'a, P> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        let tat: Duration = self.tat.into();
        write!(f, "rate-limited until {:?}", self.limiter.start + tat)
    }
}

#[derive(Debug, PartialEq)]
pub(crate) struct GCRA<P: clock::Reference = <clock::DefaultClock as clock::Clock>::Instant> {
    // The "weight" of a single packet in units of time.
    t: Nanos,

    // The "capacity" of the bucket.
    tau: Nanos,

    // Base reference to when the bucket got created. All measurements are relative to this
    // timestamp.
    start: P,
}

impl<P: clock::Reference> GCRA<P> {
    pub(crate) fn new(start: P, quota: Quota) -> Self {
        let tau: Nanos = quota.per.into();
        let t: Nanos = (quota.per / quota.max_burst.get()).into();
        GCRA { tau, t, start }
    }

    pub(crate) fn new_state(&self, now: P) -> Tat {
        let tat = Nanos::from(now.duration_since(self.start)) + self.t;
        Tat::new(tat)
    }

    pub(crate) fn test_and_update(&self, state: &Tat, t0: P) -> Result<(), NotUntil<P>> {
        let t0: Nanos = t0.duration_since(self.start).into();
        let tau = self.tau;
        let t = self.t;
        state.measure_and_replace(|tat| {
            if t0 < tat.saturating_sub(tau) {
                Err(NotUntil { limiter: self, tat })
            } else {
                Ok(((), cmp::max(tat, t0) + t))
            }
        })
    }

    /// Tests whether all `n` cells could be accommodated and updates the rate limiter state, if so.
    pub(crate) fn test_n_all_and_update(
        &self,
        n: NonZeroU32,
        state: &Tat,
        t0: P,
    ) -> Result<(), NegativeMultiDecision<NotUntil<P>>> {
        let t0: Nanos = t0.duration_since(self.start).into();
        let tau = self.tau;
        let t = self.t;
        let weight = t * (n.get() - 1) as u64;
        if weight > tau {
            return Err(NegativeMultiDecision::InsufficientCapacity(
                (tau.as_u64() / t.as_u64()) as u32,
            ));
        }
        state.measure_and_replace(|tat| {
            if t0 < (tat + weight).saturating_sub(tau) {
                Err(NegativeMultiDecision::BatchNonConforming(
                    n.get(),
                    NotUntil { limiter: self, tat },
                ))
            } else {
                Ok(((), cmp::max(tat, t0) + t + weight))
            }
        })
    }
}