#[non_exhaustive]pub struct ModelDeploymentMonitoringJob {Show 25 fields
pub name: String,
pub display_name: String,
pub endpoint: String,
pub state: JobState,
pub schedule_state: MonitoringScheduleState,
pub latest_monitoring_pipeline_metadata: Option<LatestMonitoringPipelineMetadata>,
pub model_deployment_monitoring_objective_configs: Vec<ModelDeploymentMonitoringObjectiveConfig>,
pub model_deployment_monitoring_schedule_config: Option<ModelDeploymentMonitoringScheduleConfig>,
pub logging_sampling_strategy: Option<SamplingStrategy>,
pub model_monitoring_alert_config: Option<ModelMonitoringAlertConfig>,
pub predict_instance_schema_uri: String,
pub sample_predict_instance: Option<Value>,
pub analysis_instance_schema_uri: String,
pub bigquery_tables: Vec<ModelDeploymentMonitoringBigQueryTable>,
pub log_ttl: Option<Duration>,
pub labels: HashMap<String, String>,
pub create_time: Option<Timestamp>,
pub update_time: Option<Timestamp>,
pub next_schedule_time: Option<Timestamp>,
pub stats_anomalies_base_directory: Option<GcsDestination>,
pub encryption_spec: Option<EncryptionSpec>,
pub enable_monitoring_pipeline_logs: bool,
pub error: Option<Status>,
pub satisfies_pzs: bool,
pub satisfies_pzi: bool,
/* private fields */
}Expand description
Represents a job that runs periodically to monitor the deployed models in an endpoint. It will analyze the logged training & prediction data to detect any abnormal behaviors.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.name: StringOutput only. Resource name of a ModelDeploymentMonitoringJob.
display_name: StringRequired. The user-defined name of the ModelDeploymentMonitoringJob. The name can be up to 128 characters long and can consist of any UTF-8 characters. Display name of a ModelDeploymentMonitoringJob.
endpoint: StringRequired. Endpoint resource name.
Format: projects/{project}/locations/{location}/endpoints/{endpoint}
state: JobStateOutput only. The detailed state of the monitoring job. When the job is still creating, the state will be ‘PENDING’. Once the job is successfully created, the state will be ‘RUNNING’. Pause the job, the state will be ‘PAUSED’. Resume the job, the state will return to ‘RUNNING’.
schedule_state: MonitoringScheduleStateOutput only. Schedule state when the monitoring job is in Running state.
latest_monitoring_pipeline_metadata: Option<LatestMonitoringPipelineMetadata>Output only. Latest triggered monitoring pipeline metadata.
model_deployment_monitoring_objective_configs: Vec<ModelDeploymentMonitoringObjectiveConfig>Required. The config for monitoring objectives. This is a per DeployedModel config. Each DeployedModel needs to be configured separately.
model_deployment_monitoring_schedule_config: Option<ModelDeploymentMonitoringScheduleConfig>Required. Schedule config for running the monitoring job.
logging_sampling_strategy: Option<SamplingStrategy>Required. Sample Strategy for logging.
model_monitoring_alert_config: Option<ModelMonitoringAlertConfig>Alert config for model monitoring.
predict_instance_schema_uri: StringYAML schema file uri describing the format of a single instance, which are given to format this Endpoint’s prediction (and explanation). If not set, we will generate predict schema from collected predict requests.
sample_predict_instance: Option<Value>Sample Predict instance, same format as PredictRequest.instances, this can be set as a replacement of ModelDeploymentMonitoringJob.predict_instance_schema_uri. If not set, we will generate predict schema from collected predict requests.
analysis_instance_schema_uri: StringYAML schema file uri describing the format of a single instance that you want Tensorflow Data Validation (TFDV) to analyze.
If this field is empty, all the feature data types are inferred from predict_instance_schema_uri, meaning that TFDV will use the data in the exact format(data type) as prediction request/response. If there are any data type differences between predict instance and TFDV instance, this field can be used to override the schema. For models trained with Vertex AI, this field must be set as all the fields in predict instance formatted as string.
bigquery_tables: Vec<ModelDeploymentMonitoringBigQueryTable>Output only. The created bigquery tables for the job under customer project. Customer could do their own query & analysis. There could be 4 log tables in maximum:
. Training data logging predict request/response . Serving data logging predict request/response
log_ttl: Option<Duration>The TTL of BigQuery tables in user projects which stores logs. A day is the basic unit of the TTL and we take the ceil of TTL/86400(a day). e.g. { second: 3600} indicates ttl = 1 day.
labels: HashMap<String, String>The labels with user-defined metadata to organize your ModelDeploymentMonitoringJob.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
create_time: Option<Timestamp>Output only. Timestamp when this ModelDeploymentMonitoringJob was created.
update_time: Option<Timestamp>Output only. Timestamp when this ModelDeploymentMonitoringJob was updated most recently.
next_schedule_time: Option<Timestamp>Output only. Timestamp when this monitoring pipeline will be scheduled to run for the next round.
stats_anomalies_base_directory: Option<GcsDestination>Stats anomalies base folder path.
encryption_spec: Option<EncryptionSpec>Customer-managed encryption key spec for a ModelDeploymentMonitoringJob. If set, this ModelDeploymentMonitoringJob and all sub-resources of this ModelDeploymentMonitoringJob will be secured by this key.
enable_monitoring_pipeline_logs: boolIf true, the scheduled monitoring pipeline logs are sent to Google Cloud Logging, including pipeline status and anomalies detected. Please note the logs incur cost, which are subject to Cloud Logging pricing.
error: Option<Status>Output only. Only populated when the job’s state is JOB_STATE_FAILED or
JOB_STATE_CANCELLED.
satisfies_pzs: boolOutput only. Reserved for future use.
satisfies_pzi: boolOutput only. Reserved for future use.
Implementations§
Source§impl ModelDeploymentMonitoringJob
impl ModelDeploymentMonitoringJob
pub fn new() -> Self
Sourcepub fn set_display_name<T: Into<String>>(self, v: T) -> Self
pub fn set_display_name<T: Into<String>>(self, v: T) -> Self
Sets the value of display_name.
Sourcepub fn set_endpoint<T: Into<String>>(self, v: T) -> Self
pub fn set_endpoint<T: Into<String>>(self, v: T) -> Self
Sets the value of endpoint.
Sourcepub fn set_schedule_state<T: Into<MonitoringScheduleState>>(self, v: T) -> Self
pub fn set_schedule_state<T: Into<MonitoringScheduleState>>(self, v: T) -> Self
Sets the value of schedule_state.
Sourcepub fn set_latest_monitoring_pipeline_metadata<T: Into<Option<LatestMonitoringPipelineMetadata>>>(
self,
v: T,
) -> Self
pub fn set_latest_monitoring_pipeline_metadata<T: Into<Option<LatestMonitoringPipelineMetadata>>>( self, v: T, ) -> Self
Sets the value of latest_monitoring_pipeline_metadata.
Sourcepub fn set_model_deployment_monitoring_objective_configs<T, V>(
self,
v: T,
) -> Self
pub fn set_model_deployment_monitoring_objective_configs<T, V>( self, v: T, ) -> Self
Sets the value of model_deployment_monitoring_objective_configs.
Sourcepub fn set_model_deployment_monitoring_schedule_config<T: Into<Option<ModelDeploymentMonitoringScheduleConfig>>>(
self,
v: T,
) -> Self
pub fn set_model_deployment_monitoring_schedule_config<T: Into<Option<ModelDeploymentMonitoringScheduleConfig>>>( self, v: T, ) -> Self
Sets the value of model_deployment_monitoring_schedule_config.
Sourcepub fn set_logging_sampling_strategy<T: Into<Option<SamplingStrategy>>>(
self,
v: T,
) -> Self
pub fn set_logging_sampling_strategy<T: Into<Option<SamplingStrategy>>>( self, v: T, ) -> Self
Sets the value of logging_sampling_strategy.
Sourcepub fn set_model_monitoring_alert_config<T: Into<Option<ModelMonitoringAlertConfig>>>(
self,
v: T,
) -> Self
pub fn set_model_monitoring_alert_config<T: Into<Option<ModelMonitoringAlertConfig>>>( self, v: T, ) -> Self
Sets the value of model_monitoring_alert_config.
Sourcepub fn set_predict_instance_schema_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_predict_instance_schema_uri<T: Into<String>>(self, v: T) -> Self
Sets the value of predict_instance_schema_uri.
Sourcepub fn set_sample_predict_instance<T: Into<Option<Value>>>(self, v: T) -> Self
pub fn set_sample_predict_instance<T: Into<Option<Value>>>(self, v: T) -> Self
Sets the value of sample_predict_instance.
Sourcepub fn set_analysis_instance_schema_uri<T: Into<String>>(self, v: T) -> Self
pub fn set_analysis_instance_schema_uri<T: Into<String>>(self, v: T) -> Self
Sets the value of analysis_instance_schema_uri.
Sourcepub fn set_bigquery_tables<T, V>(self, v: T) -> Self
pub fn set_bigquery_tables<T, V>(self, v: T) -> Self
Sets the value of bigquery_tables.
Sourcepub fn set_labels<T, K, V>(self, v: T) -> Self
pub fn set_labels<T, K, V>(self, v: T) -> Self
Sets the value of labels.
Sourcepub fn set_create_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
pub fn set_create_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
Sets the value of create_time.
Sourcepub fn set_update_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
pub fn set_update_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
Sets the value of update_time.
Sourcepub fn set_next_schedule_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
pub fn set_next_schedule_time<T: Into<Option<Timestamp>>>(self, v: T) -> Self
Sets the value of next_schedule_time.
Sourcepub fn set_stats_anomalies_base_directory<T: Into<Option<GcsDestination>>>(
self,
v: T,
) -> Self
pub fn set_stats_anomalies_base_directory<T: Into<Option<GcsDestination>>>( self, v: T, ) -> Self
Sets the value of stats_anomalies_base_directory.
Sourcepub fn set_encryption_spec<T: Into<Option<EncryptionSpec>>>(self, v: T) -> Self
pub fn set_encryption_spec<T: Into<Option<EncryptionSpec>>>(self, v: T) -> Self
Sets the value of encryption_spec.
Sourcepub fn set_enable_monitoring_pipeline_logs<T: Into<bool>>(self, v: T) -> Self
pub fn set_enable_monitoring_pipeline_logs<T: Into<bool>>(self, v: T) -> Self
Sets the value of enable_monitoring_pipeline_logs.
Sourcepub fn set_satisfies_pzs<T: Into<bool>>(self, v: T) -> Self
pub fn set_satisfies_pzs<T: Into<bool>>(self, v: T) -> Self
Sets the value of satisfies_pzs.
Sourcepub fn set_satisfies_pzi<T: Into<bool>>(self, v: T) -> Self
pub fn set_satisfies_pzi<T: Into<bool>>(self, v: T) -> Self
Sets the value of satisfies_pzi.
Trait Implementations§
Source§impl Clone for ModelDeploymentMonitoringJob
impl Clone for ModelDeploymentMonitoringJob
Source§fn clone(&self) -> ModelDeploymentMonitoringJob
fn clone(&self) -> ModelDeploymentMonitoringJob
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreSource§impl Debug for ModelDeploymentMonitoringJob
impl Debug for ModelDeploymentMonitoringJob
Source§impl Default for ModelDeploymentMonitoringJob
impl Default for ModelDeploymentMonitoringJob
Source§fn default() -> ModelDeploymentMonitoringJob
fn default() -> ModelDeploymentMonitoringJob
Source§impl<'de> Deserialize<'de> for ModelDeploymentMonitoringJobwhere
ModelDeploymentMonitoringJob: Default,
impl<'de> Deserialize<'de> for ModelDeploymentMonitoringJobwhere
ModelDeploymentMonitoringJob: Default,
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Source§impl PartialEq for ModelDeploymentMonitoringJob
impl PartialEq for ModelDeploymentMonitoringJob
Source§fn eq(&self, other: &ModelDeploymentMonitoringJob) -> bool
fn eq(&self, other: &ModelDeploymentMonitoringJob) -> bool
self and other values to be equal, and is used by ==.