1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2024 Golem Cloud
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod compfn;

use std::fmt::{Debug, Display, Formatter};
use std::rc::Rc;

use crate::bindings::golem::api::host::{get_oplog_index, set_oplog_index, OplogIndex};
use crate::mark_atomic_operation;

pub use compfn::*;

/// Represents an atomic operation of the transaction which has a rollback action.
///
/// Implement this trait and use it within a `transaction` block.
/// Operations can also be constructed from closures using `operation`.
pub trait Operation: Clone {
    type In: Clone;
    type Out: Clone;
    type Err: Clone;

    /// Executes the operation which may fail with a domain error
    fn execute(&self, input: Self::In) -> Result<Self::Out, Self::Err>;

    /// Executes a compensation action for the operation.
    fn compensate(&self, input: Self::In, result: Self::Out) -> Result<(), Self::Err>;
}

/// Constructs an `Operation` from two closures: one for executing the operation,
/// and one for rolling it back. The rollback operation always sees the input and
/// the output of the operation.
///
/// This operation can run the compensation in both fallible and infallible transactions.
pub fn operation<In: Clone, Out: Clone, Err: Clone>(
    execute_fn: impl Fn(In) -> Result<Out, Err> + 'static,
    compensate_fn: impl Fn(In, Out) -> Result<(), Err> + 'static,
) -> impl Operation<In = In, Out = Out, Err = Err> {
    FnOperation {
        execute_fn: Rc::new(execute_fn),
        compensate_fn: Rc::new(compensate_fn),
    }
}

#[allow(clippy::type_complexity)]
struct FnOperation<In, Out, Err> {
    execute_fn: Rc<dyn Fn(In) -> Result<Out, Err>>,
    compensate_fn: Rc<dyn Fn(In, Out) -> Result<(), Err>>,
}

impl<In, Out, Err> Clone for FnOperation<In, Out, Err> {
    fn clone(&self) -> Self {
        Self {
            execute_fn: self.execute_fn.clone(),
            compensate_fn: self.compensate_fn.clone(),
        }
    }
}

impl<In: Clone, Out: Clone, Err: Clone> Operation for FnOperation<In, Out, Err> {
    type In = In;
    type Out = Out;
    type Err = Err;

    fn execute(&self, input: In) -> Result<Out, Err> {
        (self.execute_fn)(input)
    }

    fn compensate(&self, input: In, result: Out) -> Result<(), Err> {
        (self.compensate_fn)(input, result)
    }
}

/// The result of a transaction execution.
pub type TransactionResult<Out, Err> = Result<Out, TransactionFailure<Err>>;

/// The result of a transaction execution that failed.
#[derive(Debug)]
pub enum TransactionFailure<Err> {
    /// One of the operations failed with an error, and the transaction was fully rolled back.
    FailedAndRolledBackCompletely(Err),
    /// One of the operations failed with an error, and the transaction was partially rolled back
    /// because the compensation action of one of the operations also failed.
    FailedAndRolledBackPartially {
        failure: Err,
        compensation_failure: Err,
    },
}

impl<Err: Display> Display for TransactionFailure<Err> {
    fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
        match self {
            TransactionFailure::FailedAndRolledBackCompletely(err) => {
                write!(f, "Transaction failed with {err} and rolled back completely.")
            }
            TransactionFailure::FailedAndRolledBackPartially {
                failure,
                compensation_failure,
            } => write!(
                f,
                "Transaction failed with {failure} and rolled back partially; compensation failed with: {compensation_failure}."
            ),
        }
    }
}

/// Fallible transaction execution. If any operation fails, all the already executed
/// successful operation's compensation actions are executed in reverse order and the transaction
/// returns with a failure.
pub fn fallible_transaction<Out, Err: Clone + 'static>(
    f: impl FnOnce(&mut FallibleTransaction<Err>) -> Result<Out, Err>,
) -> TransactionResult<Out, Err> {
    let mut transaction = FallibleTransaction::new();
    match f(&mut transaction) {
        Ok(output) => Ok(output),
        Err(error) => Err(transaction.on_fail(error)),
    }
}

/// Retry the transaction in case of failure. If any operation returns with a failure, all
/// the already executed successful operation's compensation actions are executed in reverse order
/// and the transaction gets retried, using Golem's active retry policy.
pub fn infallible_transaction<Out>(f: impl FnOnce(&mut InfallibleTransaction) -> Out) -> Out {
    let oplog_index = get_oplog_index();
    let _atomic_region = mark_atomic_operation();
    let mut transaction = InfallibleTransaction::new(oplog_index);
    f(&mut transaction)
}

/// Same as `infallible_transaction`, but with strong rollback guarantees. The compensation actions
/// are guaranteed to be always executed before the transaction gets retried, even if it
/// fails due to a panic or an external executor failure.
pub fn infallible_transaction_with_strong_rollback_guarantees<Out>(
    _f: impl FnOnce(&mut InfallibleTransaction) -> Out,
) -> Out {
    unimplemented!()
}

/// A generic interface for defining transactions, where the transaction mode is
/// determined by the function's parameter (it can be `FallibleTransaction` or `InfallibleTransaction`).
///
/// This makes switching between different transaction guarantees easier, but is more constrained
/// than using the specific transaction functions where for retried transactions errors does
/// not have to be handled.
pub fn transaction<Out, Err, F, T>(f: F) -> TransactionResult<Out, Err>
where
    T: Transaction<Err>,
    F: FnOnce(&mut T) -> Result<Out, Err>,
{
    T::run(f)
}

/// Helper struct for coupling compensation action and the result of the operation.
#[allow(clippy::type_complexity)]
struct CompensationAction<Err> {
    action: Box<dyn Fn() -> Result<(), Err>>,
}

impl<Err> CompensationAction<Err> {
    pub fn execute(&self) -> Result<(), Err> {
        (self.action)()
    }
}

/// FallibleTransaction is a sequence of operations that are executed in a way that if any of the
/// operations fails all the already performed operation's compensation actions got executed in
/// reverse order.
///
/// In case of fatal errors (panic) and external executor failures it does not perform the
/// compensation actions and the whole transaction gets retried.
pub struct FallibleTransaction<Err> {
    compensations: Vec<CompensationAction<Err>>,
}

impl<Err: Clone + 'static> FallibleTransaction<Err> {
    fn new() -> Self {
        Self {
            compensations: Vec::new(),
        }
    }

    pub fn execute<OpIn: Clone + 'static, OpOut: Clone + 'static>(
        &mut self,
        operation: impl Operation<In = OpIn, Out = OpOut, Err = Err> + 'static,
        input: OpIn,
    ) -> Result<OpOut, Err> {
        let result = operation.execute(input.clone());
        if let Ok(output) = &result {
            let cloned_op = operation.clone();
            let cloned_out = output.clone();
            self.compensations.push(CompensationAction {
                action: Box::new(move || cloned_op.compensate(input.clone(), cloned_out.clone())),
            });
        }
        result
    }

    fn on_fail(&mut self, failure: Err) -> TransactionFailure<Err> {
        for compensation_action in self.compensations.drain(..).rev() {
            if let Err(compensation_failure) = compensation_action.execute() {
                return TransactionFailure::FailedAndRolledBackPartially {
                    failure,
                    compensation_failure,
                };
            }
        }
        TransactionFailure::FailedAndRolledBackCompletely(failure)
    }
}

/// InfallibleTransaction is a sequence of operations that are executed in a way that if any of the
/// operations or the underlying Golem executor fails, the whole transaction is going to
/// be retried.
///
/// In addition to that, **user level failures** (represented by the `Result::Err` value
/// of an operation) lead to performing the compensation actions of each already performed operation
/// in reverse order.
///
/// Fatal errors (panic) and external executor failures are currently cannot perform the
/// rollback actions.
pub struct InfallibleTransaction {
    begin_oplog_index: OplogIndex,
    compensations: Vec<CompensationAction<()>>,
}

impl InfallibleTransaction {
    fn new(begin_oplog_index: OplogIndex) -> Self {
        Self {
            begin_oplog_index,
            compensations: Vec::new(),
        }
    }

    pub fn execute<
        OpIn: Clone + 'static,
        OpOut: Clone + 'static,
        OpErr: Debug + Clone + 'static,
    >(
        &mut self,
        operation: impl Operation<In = OpIn, Out = OpOut, Err = OpErr> + 'static,
        input: OpIn,
    ) -> OpOut {
        match operation.execute(input.clone()) {
            Ok(output) => {
                let cloned_op = operation.clone();
                let cloned_out = output.clone();
                self.compensations.push(CompensationAction {
                    action: Box::new(move || {
                        cloned_op
                            .compensate(input.clone(), cloned_out.clone())
                            .expect("Compensation action failed");
                        Ok(())
                    }),
                });
                output
            }
            Err(_) => {
                self.retry();
                unreachable!()
            }
        }
    }

    /// Stop executing the transaction and retry from the beginning, after executing the compensation actions
    pub fn retry(&mut self) {
        for compensation_action in self.compensations.drain(..).rev() {
            let _ = compensation_action.execute();
        }
        set_oplog_index(self.begin_oplog_index);
    }
}

/// A unified interface for the different types of transactions. Using it can make the code
/// easier to switch between different transactional guarantees but is more constrained in
/// terms of error types.
pub trait Transaction<Err> {
    fn execute<OpIn: Clone + 'static, OpOut: Clone + 'static>(
        &mut self,
        operation: impl Operation<In = OpIn, Out = OpOut, Err = Err> + 'static,
        input: OpIn,
    ) -> Result<OpOut, Err>;

    fn fail(&mut self, error: Err) -> Result<(), Err>;

    fn run<Out>(f: impl FnOnce(&mut Self) -> Result<Out, Err>) -> TransactionResult<Out, Err>;
}

impl<Err: Clone + 'static> Transaction<Err> for FallibleTransaction<Err> {
    fn execute<OpIn: Clone + 'static, OpOut: Clone + 'static>(
        &mut self,
        operation: impl Operation<In = OpIn, Out = OpOut, Err = Err> + 'static,
        input: OpIn,
    ) -> Result<OpOut, Err> {
        FallibleTransaction::execute(self, operation, input)
    }

    fn fail(&mut self, error: Err) -> Result<(), Err> {
        Err(error)
    }

    fn run<Out>(f: impl FnOnce(&mut Self) -> Result<Out, Err>) -> TransactionResult<Out, Err> {
        fallible_transaction(f)
    }
}

impl<Err: Debug + Clone + 'static> Transaction<Err> for InfallibleTransaction {
    fn execute<OpIn: Clone + 'static, OpOut: Clone + 'static>(
        &mut self,
        operation: impl Operation<In = OpIn, Out = OpOut, Err = Err> + 'static,
        input: OpIn,
    ) -> Result<OpOut, Err> {
        Ok(InfallibleTransaction::execute(self, operation, input))
    }

    fn fail(&mut self, error: Err) -> Result<(), Err> {
        InfallibleTransaction::retry(self);
        Err(error)
    }

    fn run<Out>(f: impl FnOnce(&mut Self) -> Result<Out, Err>) -> TransactionResult<Out, Err> {
        Ok(infallible_transaction(|tx| f(tx).unwrap()))
    }
}

#[cfg(test)]
mod tests {
    use std::cell::RefCell;
    use std::rc::Rc;

    use crate::{fallible_transaction, infallible_transaction, operation};

    // Not a real test, just verifying that the code compiles
    #[test]
    #[ignore]
    fn tx_test_1() {
        let log = Rc::new(RefCell::new(Vec::new()));

        let log1 = log.clone();
        let log2 = log.clone();
        let log3 = log.clone();
        let log4 = log.clone();

        let op1 = operation(
            move |input: String| {
                log1.borrow_mut().push(format!("op1 execute {input}"));
                Ok(())
            },
            move |input: String, _| {
                log2.borrow_mut().push(format!("op1 rollback {input}"));
                Ok(())
            },
        );

        let op2 = operation(
            move |_: ()| {
                log3.clone().borrow_mut().push("op2 execute".to_string());
                Err::<(), &str>("op2 error")
            },
            move |_: (), _| {
                log4.clone().borrow_mut().push("op2 rollback".to_string());
                Ok(())
            },
        );

        let result = fallible_transaction(|tx| {
            println!("First we execute op1");
            tx.execute(op1, "hello".to_string())?;
            println!("Then execute op2");
            tx.execute(op2, ())?;
            println!("Finally compute a result");
            Ok(11)
        });

        println!("{log:?}");
        println!("{result:?}");
    }

    // Not a real test, just verifying that the code compiles
    #[test]
    #[ignore]
    fn tx_test_2() {
        let log = Rc::new(RefCell::new(Vec::new()));

        let log1 = log.clone();
        let log2 = log.clone();
        let log3 = log.clone();
        let log4 = log.clone();

        let op1 = operation(
            move |input: String| {
                log1.borrow_mut().push(format!("op1 execute {input}"));
                Ok::<(), ()>(())
            },
            move |input: String, _| {
                log2.borrow_mut().push(format!("op1 rollback {input}"));
                Ok(())
            },
        );

        let op2 = operation(
            move |_: ()| {
                log3.clone().borrow_mut().push("op2 execute".to_string());
                Err::<(), &str>("op2 error")
            },
            move |_: (), r| {
                log4.clone()
                    .borrow_mut()
                    .push(format!("op2 rollback {r:?}"));
                Ok(())
            },
        );

        let result = infallible_transaction(|tx| {
            println!("First we execute op1");
            tx.execute(op1, "hello".to_string());
            println!("Then execute op2");
            tx.execute(op2, ());
            println!("Finally compute a result");
            11
        });

        println!("{log:?}");
        println!("{result:?}");
    }
}

#[cfg(test)]
#[cfg(feature = "macro")]
mod macro_tests {
    use golem_rust_macro::golem_operation;

    use crate::{fallible_transaction, infallible_transaction};

    mod golem_rust {
        pub use crate::*;
    }

    #[golem_operation(compensation=test_compensation)]
    fn test_operation(input1: u64, input2: f32) -> Result<bool, String> {
        println!("Op input: {input1}, {input2}");
        Ok(true)
    }

    fn test_compensation(_: bool, input1: u64, input2: f32) -> Result<(), String> {
        println!("Compensation input: {input1}, {input2}");
        Ok(())
    }

    #[golem_operation(compensation=test_compensation_2)]
    fn test_operation_2(input1: u64, input2: f32) -> Result<bool, String> {
        println!("Op input: {input1}, {input2}");
        Ok(true)
    }

    fn test_compensation_2(result: bool) -> Result<(), String> {
        println!("Compensation for operation result {result:?}");
        Ok(())
    }

    #[golem_operation(compensation=test_compensation_3)]
    fn test_operation_3(input: String) -> Result<(), String> {
        println!("Op input: {input}");
        Ok(())
    }

    fn test_compensation_3() -> Result<(), String> {
        println!("Compensation for operation, not using any input");
        Ok(())
    }

    #[golem_operation(compensation=test_compensation_4)]
    fn test_operation_4(input: u64) -> Result<(), String> {
        println!("Op input: {input}");
        Ok(())
    }

    fn test_compensation_4(_: (), input: u64) -> Result<(), String> {
        println!("Compensation for operation with single input {input}");
        Ok(())
    }

    // Not a real test, just verifying that the code compiles
    #[test]
    #[ignore]
    fn tx_test_1() {
        let result = fallible_transaction(|tx| {
            println!("Executing the annotated function as an operation directly");
            tx.test_operation(1, 0.1)?;
            tx.test_operation_2(1, 0.1)?;
            tx.test_operation_3("test".to_string())?;
            tx.test_operation_4(1)?;

            Ok(11)
        });

        println!("{result:?}");
    }

    // Not a real test, just verifying that the code compiles
    #[test]
    #[ignore]
    fn tx_test_2() {
        let result = infallible_transaction(|tx| {
            println!("Executing the annotated function as an operation directly");
            let _ = tx.test_operation(1, 0.1);
            11
        });

        println!("{result:?}");
    }
}