1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//! The generic ELF module, which gives access to ELF constants and other helper functions, which are independent of ELF bithood.  Also defines an `Elf` struct which implements a unified parser that returns a wrapped `Elf64` or `Elf32` binary.
//!
//! To access the exact 32-bit or 64-bit versions, use [goblin::elf32::Header](header/header32/struct.Header.html)/[goblin::elf64::Header](header/header64/struct.Header.html), etc., for the various 32/64-bit structs.
//!
//! # Example
//!
//! ```rust
//! use std::fs::File;
//!
//! pub fn read (bytes: &[u8]) {
//!   match goblin::elf::Elf::parse(&bytes) {
//!     Ok(binary) => {
//!       let entry = binary.entry;
//!       for ph in binary.program_headers {
//!         if ph.p_type == goblin::elf::program_header::PT_LOAD {
//!           // TODO: you should validate p_filesz before allocating.
//!           let mut _buf = vec![0u8; ph.p_filesz as usize];
//!           // read responsibly
//!          }
//!       }
//!     },
//!     Err(_) => ()
//!   }
//! }
//! ```
//!
//! This will properly access the underlying 32-bit or 64-bit binary automatically. Note that since
//! 32-bit binaries typically have shorter 32-bit values in some cases (specifically for addresses and pointer
//! values), these values are upcasted to u64/i64s when appropriate.
//!
//! See [goblin::elf::Elf](struct.Elf.html) for more information.
//!
//! You are still free to use the specific 32-bit or 64-bit versions by accessing them through `goblin::elf64`, etc., but you will have to parse and/or construct the various components yourself.
//! In other words, there is no unified 32/64-bit `Elf` struct.
//!
//! # Note
//! To use the automagic ELF datatype union parser, you _must_ enable/opt-in to the  `elf64`, `elf32`, and
//! `endian_fd` features if you disable `default`.

#[macro_use]
pub(crate) mod gnu_hash;

// These are shareable values for the 32/64 bit implementations.
//
// They are publicly re-exported by the pub-using module
pub mod compression_header;
pub mod header;
pub mod program_header;
pub mod section_header;
#[macro_use]
pub mod sym;
pub mod dynamic;
#[macro_use]
pub mod reloc;
pub mod note;

macro_rules! if_sylvan {
    ($($i:item)*) => ($(
        #[cfg(all(feature = "elf32", feature = "elf64", feature = "endian_fd"))]
        $i
    )*)
}

if_sylvan! {
    use scroll::{ctx, Pread, Endian};
    use crate::strtab::Strtab;
    use crate::error;
    use crate::container::{Container, Ctx};
    use alloc::vec::Vec;
    use core::cmp;

    pub type Header = header::Header;
    pub type ProgramHeader = program_header::ProgramHeader;
    pub type SectionHeader = section_header::SectionHeader;
    pub type Symtab<'a> = sym::Symtab<'a>;
    pub type Sym = sym::Sym;
    pub type Dyn = dynamic::Dyn;
    pub type Dynamic = dynamic::Dynamic;
    pub type Reloc = reloc::Reloc;
    pub type RelocSection<'a> = reloc::RelocSection<'a>;

    pub type ProgramHeaders = Vec<ProgramHeader>;
    pub type SectionHeaders = Vec<SectionHeader>;
    pub type ShdrIdx = usize;

    #[derive(Debug)]
    /// An ELF binary. The underlying data structures are read according to the headers byte order and container size (32 or 64).
    pub struct Elf<'a> {
        /// The ELF header, which provides a rudimentary index into the rest of the binary
        pub header: Header,
        /// The program headers; they primarily tell the kernel and the dynamic linker
        /// how to load this binary
        pub program_headers: ProgramHeaders,
        /// The sections headers. These are strippable, never count on them being
        /// here unless you're a static linker!
        pub section_headers: SectionHeaders,
        /// The section header string table
        pub shdr_strtab: Strtab<'a>,
        /// The string table for the dynamically accessible symbols
        pub dynstrtab: Strtab<'a>,
        /// The dynamically accessible symbols, i.e., exports, imports.
        /// This is what the dynamic linker uses to dynamically load and link your binary,
        /// or find imported symbols for binaries which dynamically link against your library
        pub dynsyms: Symtab<'a>,
        /// The debugging symbol table
        pub syms: Symtab<'a>,
        /// The string table for the symbol table
        pub strtab: Strtab<'a>,
        /// Contains dynamic linking information, with the _DYNAMIC array + a preprocessed DynamicInfo for that array
        pub dynamic: Option<Dynamic>,
        /// The dynamic relocation entries (strings, copy-data, etc.) with an addend
        pub dynrelas: RelocSection<'a>,
        /// The dynamic relocation entries without an addend
        pub dynrels: RelocSection<'a>,
        /// The plt relocation entries (procedure linkage table). For 32-bit binaries these are usually Rel (no addend)
        pub pltrelocs: RelocSection<'a>,
        /// Section relocations by section index (only present if this is a relocatable object file)
        pub shdr_relocs: Vec<(ShdrIdx, RelocSection<'a>)>,
        /// The binary's soname, if it has one
        pub soname: Option<&'a str>,
        /// The binary's program interpreter (e.g., dynamic linker), if it has one
        pub interpreter: Option<&'a str>,
        /// A list of this binary's dynamic libraries it uses, if there are any
        pub libraries: Vec<&'a str>,
        pub is_64: bool,
        /// Whether this is a shared object or not
        pub is_lib: bool,
        /// The binaries entry point address, if it has one
        pub entry: u64,
        /// Whether the binary is little endian or not
        pub little_endian: bool,
        ctx: Ctx,
    }

    impl<'a> Elf<'a> {
        /// Try to iterate notes in PT_NOTE program headers; returns `None` if there aren't any note headers in this binary
        pub fn iter_note_headers(&self, data: &'a [u8]) -> Option<note::NoteIterator<'a>> {
            let mut iters = vec![];
            for phdr in &self.program_headers {
                if phdr.p_type == program_header::PT_NOTE {
                    let offset = phdr.p_offset as usize;
                    let alignment = phdr.p_align as usize;

                    iters.push(note::NoteDataIterator {
                        data,
                        offset,
                        size: offset + phdr.p_filesz as usize,
                        ctx: (alignment, self.ctx)
                    });
                }
            }

            if iters.is_empty() {
                None
            } else {
                Some(note::NoteIterator {
                    iters: iters,
                    index: 0,
                })
            }
        }
        /// Try to iterate notes in SHT_NOTE sections; returns `None` if there aren't any note sections in this binary
        ///
        /// If a section_name is given, only the section with the according name is iterated.
        pub fn iter_note_sections(
            &self,
            data: &'a [u8],
            section_name: Option<&str>,
        ) -> Option<note::NoteIterator<'a>> {
            let mut iters = vec![];
            for sect in &self.section_headers {
                if sect.sh_type != section_header::SHT_NOTE {
                    continue;
                }

                if section_name.is_some() && !self.shdr_strtab
                    .get(sect.sh_name)
                    .map_or(false, |r| r.ok() == section_name) {
                    continue;
                }

                let offset = sect.sh_offset as usize;
                let alignment = sect.sh_addralign as usize;
                iters.push(note::NoteDataIterator {
                    data,
                    offset,
                    size: offset + sect.sh_size as usize,
                    ctx: (alignment, self.ctx)
                });
            }

            if iters.is_empty() {
                None
            } else {
                Some(note::NoteIterator {
                    iters: iters,
                    index: 0,
                })
            }
        }
        pub fn is_object_file(&self) -> bool {
            self.header.e_type == header::ET_REL
        }
        /// Parses the contents of the byte stream in `bytes`, and maybe returns a unified binary
        pub fn parse(bytes: &'a [u8]) -> error::Result<Self> {
            let header = bytes.pread::<Header>(0)?;
            let entry = header.e_entry as usize;
            let is_lib = header.e_type == header::ET_DYN;
            let is_lsb = header.e_ident[header::EI_DATA] == header::ELFDATA2LSB;
            let endianness = scroll::Endian::from(is_lsb);
            let class = header.e_ident[header::EI_CLASS];
            if class != header::ELFCLASS64 && class != header::ELFCLASS32 {
                return Err(error::Error::Malformed(format!("Unknown values in ELF ident header: class: {} endianness: {}",
                                                           class,
                                                           header.e_ident[header::EI_DATA])));
            }
            let is_64 = class == header::ELFCLASS64;
            let container = if is_64 { Container::Big } else { Container::Little };
            let ctx = Ctx::new(container, endianness);

            let program_headers = ProgramHeader::parse(bytes, header.e_phoff as usize, header.e_phnum as usize, ctx)?;

            let mut interpreter = None;
            for ph in &program_headers {
                if ph.p_type == program_header::PT_INTERP && ph.p_filesz != 0 {
                    let count = (ph.p_filesz - 1) as usize;
                    let offset = ph.p_offset as usize;
                    interpreter = bytes.pread_with::<&str>(offset, ::scroll::ctx::StrCtx::Length(count)).ok();
                }
            }

            let section_headers = SectionHeader::parse(bytes, header.e_shoff as usize, header.e_shnum as usize, ctx)?;

            let get_strtab = |section_headers: &[SectionHeader], section_idx: usize| {
                if section_idx >= section_headers.len() {
                    // FIXME: warn! here
                    Ok(Strtab::default())
                } else {
                    let shdr = &section_headers[section_idx];
                    shdr.check_size(bytes.len())?;
                    Strtab::parse(bytes, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0)
                }
            };

            let strtab_idx = header.e_shstrndx as usize;
            let shdr_strtab = get_strtab(&section_headers, strtab_idx)?;

            let mut syms = Symtab::default();
            let mut strtab = Strtab::default();
            for shdr in &section_headers {
                if shdr.sh_type as u32 == section_header::SHT_SYMTAB {
                    let size = shdr.sh_entsize;
                    let count = if size == 0 { 0 } else { shdr.sh_size / size };
                    syms = Symtab::parse(bytes, shdr.sh_offset as usize, count as usize, ctx)?;
                    strtab = get_strtab(&section_headers, shdr.sh_link as usize)?;
                }
            }

            let mut soname = None;
            let mut libraries = vec![];
            let mut dynsyms = Symtab::default();
            let mut dynrelas = RelocSection::default();
            let mut dynrels = RelocSection::default();
            let mut pltrelocs = RelocSection::default();
            let mut dynstrtab = Strtab::default();
            let dynamic = Dynamic::parse(bytes, &program_headers, ctx)?;
            if let Some(ref dynamic) = dynamic {
                let dyn_info = &dynamic.info;
                dynstrtab = Strtab::parse(bytes,
                                          dyn_info.strtab,
                                          dyn_info.strsz,
                                          0x0)?;

                if dyn_info.soname != 0 {
                    // FIXME: warn! here
                    soname = match dynstrtab.get(dyn_info.soname) { Some(Ok(soname)) => Some(soname), _ => None };
                }
                if dyn_info.needed_count > 0 {
                    libraries = dynamic.get_libraries(&dynstrtab);
                }
                // parse the dynamic relocations
                dynrelas = RelocSection::parse(bytes, dyn_info.rela, dyn_info.relasz, true, ctx)?;
                dynrels = RelocSection::parse(bytes, dyn_info.rel, dyn_info.relsz, false, ctx)?;
                let is_rela = dyn_info.pltrel as u64 == dynamic::DT_RELA;
                pltrelocs = RelocSection::parse(bytes, dyn_info.jmprel, dyn_info.pltrelsz, is_rela, ctx)?;

                let mut num_syms = if let Some(gnu_hash) = dyn_info.gnu_hash {
                    gnu_hash_len(bytes, gnu_hash as usize, ctx)?
                } else if let Some(hash) = dyn_info.hash {
                    hash_len(bytes, hash as usize, header.e_machine, ctx)?
                } else {
                    0
                };
                let max_reloc_sym = dynrelas.iter()
                    .chain(dynrels.iter())
                    .chain(pltrelocs.iter())
                    .fold(0, |num, reloc| cmp::max(num, reloc.r_sym));
                if max_reloc_sym != 0 {
                    num_syms = cmp::max(num_syms, max_reloc_sym + 1);
                }
                dynsyms = Symtab::parse(bytes, dyn_info.symtab, num_syms, ctx)?;
            }

            let mut shdr_relocs = vec![];
            for (idx, section) in section_headers.iter().enumerate() {
                let is_rela = section.sh_type == section_header::SHT_RELA;
                if is_rela || section.sh_type == section_header::SHT_REL {
                    section.check_size(bytes.len())?;
                    let sh_relocs = RelocSection::parse(bytes, section.sh_offset as usize, section.sh_size as usize, is_rela, ctx)?;
                    shdr_relocs.push((idx, sh_relocs));
                }
            }

            Ok(Elf {
                header,
                program_headers,
                section_headers,
                shdr_strtab,
                dynamic,
                dynsyms,
                dynstrtab,
                syms,
                strtab,
                dynrelas,
                dynrels,
                pltrelocs,
                shdr_relocs,
                soname,
                interpreter,
                libraries,
                is_64,
                is_lib,
                entry: entry as u64,
                little_endian: is_lsb,
                ctx,
            })
        }
    }

    impl<'a> ctx::TryFromCtx<'a, (usize, Endian)> for Elf<'a> {
        type Error = crate::error::Error;
        fn try_from_ctx(src: &'a [u8], (_, _): (usize, Endian)) -> Result<(Elf<'a>, usize), Self::Error> {
            let elf = Elf::parse(src)?;
            Ok((elf, src.len()))
        }
    }

    fn gnu_hash_len(bytes: &[u8], offset: usize, ctx: Ctx) -> error::Result<usize> {
        let buckets_num = bytes.pread_with::<u32>(offset, ctx.le)? as usize;
        let min_chain = bytes.pread_with::<u32>(offset + 4, ctx.le)? as usize;
        let bloom_size = bytes.pread_with::<u32>(offset + 8, ctx.le)? as usize;
        // We could handle min_chain==0 if we really had to, but it shouldn't happen.
        if buckets_num == 0 || min_chain == 0 || bloom_size == 0 {
            return Err(error::Error::Malformed(format!("Invalid DT_GNU_HASH: buckets_num={} min_chain={} bloom_size={}",
                                                       buckets_num, min_chain, bloom_size)));
        }
        // Find the last bucket.
        let buckets_offset = offset + 16 + bloom_size * if ctx.container.is_big() { 8 } else { 4 };
        let mut max_chain = 0;
        for bucket in 0..buckets_num {
            let chain = bytes.pread_with::<u32>(buckets_offset + bucket * 4, ctx.le)? as usize;
            if max_chain < chain {
                max_chain = chain;
            }
        }
        if max_chain < min_chain {
            return Ok(0);
        }
        // Find the last chain within the bucket.
        let mut chain_offset = buckets_offset + buckets_num * 4 + (max_chain - min_chain) * 4;
        loop {
            let hash = bytes.pread_with::<u32>(chain_offset, ctx.le)?;
            max_chain += 1;
            chain_offset += 4;
            if hash & 1 != 0 {
                return Ok(max_chain);
            }
        }
    }

    fn hash_len(bytes: &[u8], offset: usize, machine: u16, ctx: Ctx) -> error::Result<usize> {
        // Based on readelf code.
        let nchain = if (machine == header::EM_FAKE_ALPHA || machine == header::EM_S390) && ctx.container.is_big() {
            bytes.pread_with::<u64>(offset + 4, ctx.le)? as usize
        } else {
            bytes.pread_with::<u32>(offset + 4, ctx.le)? as usize
        };
        Ok(nchain)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn parse_crt1_64bit() {
        let crt1: Vec<u8> = include!("../../etc/crt1.rs");
        match Elf::parse(&crt1) {
            Ok(binary) => {
                assert!(binary.is_64);
                assert!(!binary.is_lib);
                assert_eq!(binary.entry, 0);
                assert!(binary.syms.get(1000).is_none());
                assert!(binary.syms.get(5).is_some());
                let syms = binary.syms.to_vec();
                assert!(!binary.section_headers.is_empty());
                for (i, sym) in syms.iter().enumerate() {
                    if i == 11 {
                        let symtab = binary.strtab;
                        println!("sym: {:?}", &sym);
                        assert_eq!(&symtab[sym.st_name], "_start");
                        break;
                    }
                }
                assert!(!syms.is_empty());
            }
            Err(err) => {
                panic!("failed: {}", err);
            }
        }
    }

    #[test]
    fn parse_crt1_32bit() {
        let crt1: Vec<u8> = include!("../../etc/crt132.rs");
        match Elf::parse(&crt1) {
            Ok(binary) => {
                assert!(!binary.is_64);
                assert!(!binary.is_lib);
                assert_eq!(binary.entry, 0);
                assert!(binary.syms.get(1000).is_none());
                assert!(binary.syms.get(5).is_some());
                let syms = binary.syms.to_vec();
                assert!(!binary.section_headers.is_empty());
                for (i, sym) in syms.iter().enumerate() {
                    if i == 11 {
                        let symtab = binary.strtab;
                        println!("sym: {:?}", &sym);
                        assert_eq!(&symtab[sym.st_name], "__libc_csu_fini");
                        break;
                    }
                }
                assert!(!syms.is_empty());
            }
            Err(err) => {
                panic!("failed: {}", err);
            }
        }
    }
}