1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//! Exception handling and stack unwinding for x64.
//!
//! Exception information is exposed via the [`ExceptionData`] structure. If present in a PE file,
//! it contains a list of [`RuntimeFunction`] entries that can be used to get [`UnwindInfo`] for a
//! particular code location.
//!
//! Unwind information contains a list of unwind codes which specify the operations that are
//! necessary to restore registers (including the stack pointer RSP) when unwinding out of a
//! function.
//!
//! Depending on where the instruction pointer lies, there are three strategies to unwind:
//!
//!  1. If the RIP is within an epilog, then control is leaving the function, there can be no
//!     exception handler associated with this exception for this function, and the effects of the
//!     epilog must be continued to compute the context of the caller function. To determine if the
//!     RIP is within an epilog, the code stream from RIP on is examined. If that code stream can be
//!     matched to the trailing portion of a legitimate epilog, then it's in an epilog, and the
//!     remaining portion of the epilog is simulated, with the context record updated as each
//!     instruction is processed. After this, step 1 is repeated.
//!
//!  2. Case b) If the RIP lies within the prologue, then control has not entered the function,
//!     there can be no exception handler associated with this exception for this function, and the
//!     effects of the prolog must be undone to compute the context of the caller function. The RIP
//!     is within the prolog if the distance from the function start to the RIP is less than or
//!     equal to the prolog size encoded in the unwind info. The effects of the prolog are unwound
//!     by scanning forward through the unwind codes array for the first entry with an offset less
//!     than or equal to the offset of the RIP from the function start, then undoing the effect of
//!     all remaining items in the unwind code array. Step 1 is then repeated.
//!
//!  3. If the RIP is not within a prolog or epilog and the function has an exception handler, then
//!     the language-specific handler is called. The handler scans its data and calls filter
//!     functions as appropriate. The language-specific handler can return that the exception was
//!     handled or that the search is to be continued. It can also initiate an unwind directly.
//!
//! For more information, see [x64 exception handling].
//!
//! [`ExceptionData`]: struct.ExceptionData.html
//! [`RuntimeFunction`]: struct.RuntimeFunction.html
//! [`UnwindInfo`]: struct.UnwindInfo.html
//! [x64 exception handling]: https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64?view=vs-2017

use core::cmp::Ordering;
use core::fmt;
use core::iter::FusedIterator;

use scroll::ctx::TryFromCtx;
use scroll::{self, Pread, Pwrite};

use crate::error;

use crate::pe::data_directories;
use crate::pe::section_table;
use crate::pe::utils;

/// The function has an exception handler that should be called when looking for functions that need
/// to examine exceptions.
const UNW_FLAG_EHANDLER: u8 = 0x01;
/// The function has a termination handler that should be called when unwinding an exception.
const UNW_FLAG_UHANDLER: u8 = 0x02;
/// This unwind info structure is not the primary one for the procedure. Instead, the chained unwind
/// info entry is the contents of a previous `RUNTIME_FUNCTION` entry. If this flag is set, then the
/// `UNW_FLAG_EHANDLER` and `UNW_FLAG_UHANDLER` flags must be cleared. Also, the frame register and
/// fixed-stack allocation fields must have the same values as in the primary unwind info.
const UNW_FLAG_CHAININFO: u8 = 0x04;

/// info == register number
const UWOP_PUSH_NONVOL: u8 = 0;
/// no info, alloc size in next 2 slots
const UWOP_ALLOC_LARGE: u8 = 1;
/// info == size of allocation / 8 - 1
const UWOP_ALLOC_SMALL: u8 = 2;
/// no info, FP = RSP + UNWIND_INFO.FPRegOffset*16
const UWOP_SET_FPREG: u8 = 3;
/// info == register number, offset in next slot
const UWOP_SAVE_NONVOL: u8 = 4;
/// info == register number, offset in next 2 slots
const UWOP_SAVE_NONVOL_FAR: u8 = 5;
/// changes the structure of unwind codes to `struct Epilogue`.
/// (was UWOP_SAVE_XMM in version 1, but deprecated and removed)
const UWOP_EPILOG: u8 = 6;
/// reserved
/// (was UWOP_SAVE_XMM_FAR in version 1, but deprecated and removed)
const UWOP_SPARE_CODE: u8 = 7;
/// info == XMM reg number, offset in next slot
const UWOP_SAVE_XMM128: u8 = 8;
/// info == XMM reg number, offset in next 2 slots
const UWOP_SAVE_XMM128_FAR: u8 = 9;
/// info == 0: no error-code, 1: error-code
const UWOP_PUSH_MACHFRAME: u8 = 10;

/// Size of `RuntimeFunction` entries.
const RUNTIME_FUNCTION_SIZE: usize = 12;
/// Size of unwind code slots. Codes take 1 - 3 slots.
const UNWIND_CODE_SIZE: usize = 2;

/// An unwind entry for a range of a function.
///
/// Unwind information for this function can be loaded with [`ExceptionData::get_unwind_info`].
///
/// [`ExceptionData::get_unwind_info`]: struct.ExceptionData.html#method.get_unwind_info
#[repr(C)]
#[derive(Copy, Clone, PartialEq, Default, Pread, Pwrite)]
pub struct RuntimeFunction {
    /// Function start address.
    pub begin_address: u32,
    /// Function end address.
    pub end_address: u32,
    /// Unwind info address.
    pub unwind_info_address: u32,
}

impl fmt::Debug for RuntimeFunction {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("RuntimeFunction")
            .field("begin_address", &format_args!("{:#x}", self.begin_address))
            .field("end_address", &format_args!("{:#x}", self.end_address))
            .field(
                "unwind_info_address",
                &format_args!("{:#x}", self.unwind_info_address),
            )
            .finish()
    }
}

/// Iterator over runtime function entries in [`ExceptionData`](struct.ExceptionData.html).
#[derive(Debug)]
pub struct RuntimeFunctionIterator<'a> {
    data: &'a [u8],
}

impl Iterator for RuntimeFunctionIterator<'_> {
    type Item = error::Result<RuntimeFunction>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.data.is_empty() {
            return None;
        }

        Some(match self.data.pread_with(0, scroll::LE) {
            Ok(func) => {
                self.data = &self.data[RUNTIME_FUNCTION_SIZE..];
                Ok(func)
            }
            Err(error) => {
                self.data = &[];
                Err(error.into())
            }
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.data.len() / RUNTIME_FUNCTION_SIZE;
        (len, Some(len))
    }
}

impl FusedIterator for RuntimeFunctionIterator<'_> {}
impl ExactSizeIterator for RuntimeFunctionIterator<'_> {}

/// An x64 register used during unwinding.
///
///  - `0` - `15`: General purpose registers
///  - `17` - `32`: XMM registers
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct Register(pub u8);

impl Register {
    fn xmm(number: u8) -> Self {
        Register(number + 17)
    }

    /// Returns the x64 register name.
    pub fn name(self) -> &'static str {
        match self.0 {
            0 => "$rax",
            1 => "$rcx",
            2 => "$rdx",
            3 => "$rbx",
            4 => "$rsp",
            5 => "$rbp",
            6 => "$rsi",
            7 => "$rdi",
            8 => "$r8",
            9 => "$r9",
            10 => "$r10",
            11 => "$r11",
            12 => "$r12",
            13 => "$r13",
            14 => "$r14",
            15 => "$r15",
            16 => "$rip",
            17 => "$xmm0",
            18 => "$xmm1",
            19 => "$xmm2",
            20 => "$xmm3",
            21 => "$xmm4",
            22 => "$xmm5",
            23 => "$xmm6",
            24 => "$xmm7",
            25 => "$xmm8",
            26 => "$xmm9",
            27 => "$xmm10",
            28 => "$xmm11",
            29 => "$xmm12",
            30 => "$xmm13",
            31 => "$xmm14",
            32 => "$xmm15",
            _ => "",
        }
    }
}

/// An unsigned offset to a value in the local stack frame.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum StackFrameOffset {
    /// Offset from the current RSP, that is, the lowest address of the fixed stack allocation.
    ///
    /// To restore this register, read the value at the given offset from the RSP.
    RSP(u32),

    /// Offset from the value of the frame pointer register.
    ///
    /// To restore this register, read the value at the given offset from the FP register, reduced
    /// by the `frame_register_offset` value specified in the `UnwindInfo` structure. By definition,
    /// the frame pointer register is any register other than RAX (`0`).
    FP(u32),
}

impl StackFrameOffset {
    fn with_ctx(offset: u32, ctx: UnwindOpContext) -> Self {
        match ctx.frame_register {
            Register(0) => StackFrameOffset::RSP(offset),
            Register(_) => StackFrameOffset::FP(offset),
        }
    }
}

impl fmt::Display for Register {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.write_str(self.name())
    }
}

/// An unwind operation corresponding to code in the function prolog.
///
/// Unwind operations can be used to reverse the effects of the function prolog and restore register
/// values of parent stack frames that have been saved to the stack.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum UnwindOperation {
    /// Push a nonvolatile integer register, decrementing `RSP` by 8.
    PushNonVolatile(Register),

    /// Allocate a fixed-size area on the stack.
    Alloc(u32),

    /// Establish the frame pointer register by setting the register to some offset of the current
    /// RSP. The use of an offset permits establishing a frame pointer that points to the middle of
    /// the fixed stack allocation, helping code density by allowing more accesses to use short
    /// instruction forms.
    SetFPRegister,

    /// Save a nonvolatile integer register on the stack using a MOV instead of a PUSH. This code is
    /// primarily used for shrink-wrapping, where a nonvolatile register is saved to the stack in a
    /// position that was previously allocated.
    SaveNonVolatile(Register, StackFrameOffset),

    /// Save the lower 64 bits of a nonvolatile XMM register on the stack.
    SaveXMM(Register, StackFrameOffset),

    /// Describes the function epilog.
    ///
    /// This operation has been introduced with unwind info version 2 and is not implemented yet.
    Epilog,

    /// Save all 128 bits of a nonvolatile XMM register on the stack.
    SaveXMM128(Register, StackFrameOffset),

    /// Push a machine frame. This is used to record the effect of a hardware interrupt or
    /// exception. Depending on the error flag, this frame has two different layouts.
    ///
    /// This unwind code always appears in a dummy prolog, which is never actually executed but
    /// instead appears before the real entry point of an interrupt routine, and exists only to
    /// provide a place to simulate the push of a machine frame. This operation records that
    /// simulation, which indicates the machine has conceptually done this:
    ///
    ///  1. Pop RIP return address from top of stack into `temp`
    ///  2. `$ss`, Push old `$rsp`, `$rflags`, `$cs`, `temp`
    ///  3. If error flag is `true`, push the error code
    ///
    /// Without an error code, RSP was incremented by `40` and the following was frame pushed:
    ///
    /// Offset   | Value
    /// ---------|--------
    /// RSP + 32 | `$ss`
    /// RSP + 24 | old `$rsp`
    /// RSP + 16 | `$rflags`
    /// RSP +  8 | `$cs`
    /// RSP +  0 | `$rip`
    ///
    /// With an error code, RSP was incremented by `48` and the following was frame pushed:
    ///
    /// Offset   | Value
    /// ---------|--------
    /// RSP + 40 | `$ss`
    /// RSP + 32 | old `$rsp`
    /// RSP + 24 | `$rflags`
    /// RSP + 16 | `$cs`
    /// RSP +  8 | `$rip`
    /// RSP +  0 | error code
    PushMachineFrame(bool),

    /// A reserved operation without effect.
    Noop,
}

/// Context used to parse unwind operation.
#[derive(Clone, Copy, Debug, PartialEq)]
struct UnwindOpContext {
    /// Version of the unwind info.
    version: u8,

    /// The nonvolatile register used as the frame pointer of this function.
    ///
    /// If this register is non-zero, all stack frame offsets used in unwind operations are of type
    /// `StackFrameOffset::FP`. When loading these offsets, they have to be based off the value of
    /// this frame register instead of the conventional RSP. This allows the RSP to be modified.
    frame_register: Register,
}

/// An unwind operation that is executed at a particular place in the function prolog.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct UnwindCode {
    /// Offset of the corresponding instruction in the function prolog.
    ///
    /// To be precise, this is the offset from the beginning of the prolog of the end of the
    /// instruction that performs this operation, plus 1 (that is, the offset of the start of the
    /// next instruction).
    ///
    /// Unwind codes are ordered by this offset in reverse order, suitable for unwinding.
    pub code_offset: u8,

    /// The operation that was performed by the code in the prolog.
    pub operation: UnwindOperation,
}

impl<'a> TryFromCtx<'a, UnwindOpContext> for UnwindCode {
    type Error = error::Error;
    type Size = usize;

    #[inline]
    fn try_from_ctx(
        bytes: &'a [u8],
        ctx: UnwindOpContext,
    ) -> Result<(Self, Self::Size), Self::Error> {
        let mut read = 0;
        let code_offset = bytes.gread_with::<u8>(&mut read, scroll::LE)?;
        let operation = bytes.gread_with::<u8>(&mut read, scroll::LE)?;

        let operation_code = operation & 0xf;
        let operation_info = operation >> 4;

        let operation = match operation_code {
            self::UWOP_PUSH_NONVOL => {
                let register = Register(operation_info);
                UnwindOperation::PushNonVolatile(register)
            }
            self::UWOP_ALLOC_LARGE => {
                let offset = match operation_info {
                    0 => u32::from(bytes.gread_with::<u16>(&mut read, scroll::LE)?) * 8,
                    1 => bytes.gread_with::<u32>(&mut read, scroll::LE)?,
                    i => {
                        let msg = format!("invalid op info ({}) for UWOP_ALLOC_LARGE", i);
                        return Err(error::Error::Malformed(msg));
                    }
                };
                UnwindOperation::Alloc(offset)
            }
            self::UWOP_ALLOC_SMALL => {
                let offset = u32::from(operation_info) * 8 + 8;
                UnwindOperation::Alloc(offset)
            }
            self::UWOP_SET_FPREG => UnwindOperation::SetFPRegister,
            self::UWOP_SAVE_NONVOL => {
                let register = Register(operation_info);
                let offset = u32::from(bytes.gread_with::<u16>(&mut read, scroll::LE)?) * 8;
                UnwindOperation::SaveNonVolatile(register, StackFrameOffset::with_ctx(offset, ctx))
            }
            self::UWOP_SAVE_NONVOL_FAR => {
                let register = Register(operation_info);
                let offset = bytes.gread_with::<u32>(&mut read, scroll::LE)?;
                UnwindOperation::SaveNonVolatile(register, StackFrameOffset::with_ctx(offset, ctx))
            }
            self::UWOP_EPILOG => {
                let data = u32::from(bytes.gread_with::<u16>(&mut read, scroll::LE)?) * 16;
                if ctx.version == 1 {
                    let register = Register::xmm(operation_info);
                    UnwindOperation::SaveXMM(register, StackFrameOffset::with_ctx(data, ctx))
                } else {
                    // TODO: See https://weekly-geekly.github.io/articles/322956/index.html
                    UnwindOperation::Epilog
                }
            }
            self::UWOP_SPARE_CODE => {
                let data = bytes.gread_with::<u32>(&mut read, scroll::LE)?;
                if ctx.version == 1 {
                    let register = Register::xmm(operation_info);
                    UnwindOperation::SaveXMM128(register, StackFrameOffset::with_ctx(data, ctx))
                } else {
                    UnwindOperation::Noop
                }
            }
            self::UWOP_SAVE_XMM128 => {
                let register = Register::xmm(operation_info);
                let offset = u32::from(bytes.gread_with::<u16>(&mut read, scroll::LE)?) * 16;
                UnwindOperation::SaveXMM128(register, StackFrameOffset::with_ctx(offset, ctx))
            }
            self::UWOP_SAVE_XMM128_FAR => {
                let register = Register::xmm(operation_info);
                let offset = bytes.gread_with::<u32>(&mut read, scroll::LE)?;
                UnwindOperation::SaveXMM128(register, StackFrameOffset::with_ctx(offset, ctx))
            }
            self::UWOP_PUSH_MACHFRAME => {
                let is_error = match operation_info {
                    0 => false,
                    1 => true,
                    i => {
                        let msg = format!("invalid op info ({}) for UWOP_PUSH_MACHFRAME", i);
                        return Err(error::Error::Malformed(msg));
                    }
                };
                UnwindOperation::PushMachineFrame(is_error)
            }
            op => {
                let msg = format!("unknown unwind op code ({})", op);
                return Err(error::Error::Malformed(msg));
            }
        };

        let code = UnwindCode {
            code_offset,
            operation,
        };

        Ok((code, read))
    }
}

/// An iterator over unwind codes for a function or part of a function, returned from
/// [`UnwindInfo`].
///
/// [`UnwindInfo`]: struct.UnwindInfo.html
#[derive(Clone, Debug)]
pub struct UnwindCodeIterator<'a> {
    bytes: &'a [u8],
    offset: usize,
    context: UnwindOpContext,
}

impl Iterator for UnwindCodeIterator<'_> {
    type Item = error::Result<UnwindCode>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.offset >= self.bytes.len() {
            return None;
        }

        Some(self.bytes.gread_with(&mut self.offset, self.context))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let upper = (self.bytes.len() - self.offset) / UNWIND_CODE_SIZE;
        // the largest codes take up three slots
        let lower = (upper + 3 - (upper % 3)) / 3;
        (lower, Some(upper))
    }
}

impl FusedIterator for UnwindCodeIterator<'_> {}

/// A language-specific handler that is called as part of the search for an exception handler or as
/// part of an unwind.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum UnwindHandler<'a> {
    /// The image-relative address of an exception handler and its implementation-defined data.
    ExceptionHandler(u32, &'a [u8]),
    /// The image-relative address of a termination handler and its implementation-defined data.
    TerminationHandler(u32, &'a [u8]),
}

/// Unwind information for a function or portion of a function.
///
/// The unwind info structure is used to record the effects a function has on the stack pointer and
/// where the nonvolatile registers are saved on the stack. The unwind codes can be enumerated with
/// [`unwind_codes`].
///
/// This unwind info might only be secondary information, and link to a [chained unwind handler].
/// For unwinding, this link shall be followed until the root unwind info record has been resolved.
///
/// [`unwind_codes`]: struct.UnwindInfo.html#method.unwind_codes
/// [chained unwind handler]: struct.UnwindInfo.html#structfield.chained_info
#[derive(Clone)]
pub struct UnwindInfo<'a> {
    /// Version of this unwind info.
    pub version: u8,

    /// Length of the function prolog in bytes.
    pub size_of_prolog: u8,

    /// The nonvolatile register used as the frame pointer of this function.
    ///
    /// If this register is non-zero, all stack frame offsets used in unwind operations are of type
    /// `StackFrameOffset::FP`. When loading these offsets, they have to be based off the value of
    /// this frame register instead of the conventional RSP. This allows the RSP to be modified.
    pub frame_register: Register,

    /// Offset from RSP that is applied to the FP register when it is established.
    ///
    /// When loading offsets of type `StackFrameOffset::FP` from the stack, this offset has to be
    /// subtracted before loading the value since the actual RSP was lower by that amount in the
    /// prolog.
    pub frame_register_offset: u32,

    /// A record pointing to chained unwind information.
    ///
    /// If chained unwind info is present, then this unwind info is a secondary one and the linked
    /// unwind info contains primary information. Chained info is useful in two situations. First,
    /// it is used for noncontiguous code segments. Second, this mechanism is sometimes used to
    /// group volatile register saves.
    ///
    /// The referenced unwind info can itself specify chained unwind information, until it arrives
    /// at the root unwind info. Generally, the entire chain should be considered when unwinding.
    pub chained_info: Option<RuntimeFunction>,

    /// An exception or termination handler called as part of the unwind.
    pub handler: Option<UnwindHandler<'a>>,

    /// A list of unwind codes, sorted descending by code offset.
    code_bytes: &'a [u8],
}

impl<'a> UnwindInfo<'a> {
    /// Parses unwind information from the image at the given offset.
    pub fn parse(bytes: &'a [u8], mut offset: usize) -> error::Result<Self> {
        // Read the version and flags fields, which are combined into a single byte.
        let version_flags: u8 = bytes.gread_with(&mut offset, scroll::LE)?;
        let version = version_flags & 0b111;
        let flags = version_flags >> 3;

        if version < 1 || version > 2 {
            let msg = format!("unsupported unwind code version ({})", version);
            return Err(error::Error::Malformed(msg));
        }

        let size_of_prolog = bytes.gread_with::<u8>(&mut offset, scroll::LE)?;
        let count_of_codes = bytes.gread_with::<u8>(&mut offset, scroll::LE)?;

        // Parse the frame register and frame register offset values, that are combined into a
        // single byte.
        let frame_info = bytes.gread_with::<u8>(&mut offset, scroll::LE)?;
        // If nonzero, then the function uses a frame pointer (FP), and this field is the number
        // of the nonvolatile register used as the frame pointer. The zero register value does
        // not need special casing since it will not be referenced by the unwind operations.
        let frame_register = Register(frame_info & 0xf);
        // The the scaled offset from RSP that is applied to the FP register when it's
        // established. The actual FP register is set to RSP + 16 * this number, allowing
        // offsets from 0 to 240.
        let frame_register_offset = u32::from((frame_info >> 4) * 16);

        // An array of items that explains the effect of the prolog on the nonvolatile registers and
        // RSP. Some unwind codes require more than one slot in the array.
        let codes_size = count_of_codes as usize * UNWIND_CODE_SIZE;
        let code_bytes = bytes.gread_with(&mut offset, codes_size)?;

        // For alignment purposes, the codes array always has an even number of entries, and the
        // final entry is potentially unused. In that case, the array is one longer than indicated
        // by the count of unwind codes field.
        if count_of_codes % 2 != 0 {
            offset += 2;
        }
        debug_assert!(offset % 4 == 0);

        let mut chained_info = None;
        let mut handler = None;

        // If flag UNW_FLAG_CHAININFO is set then the UNWIND_INFO structure ends with three UWORDs.
        // These UWORDs represent the RUNTIME_FUNCTION information for the function of the chained
        // unwind.
        if flags & UNW_FLAG_CHAININFO != 0 {
            chained_info = Some(bytes.gread_with(&mut offset, scroll::LE)?);

        // The relative address of the language-specific handler is present in the UNWIND_INFO
        // whenever flags UNW_FLAG_EHANDLER or UNW_FLAG_UHANDLER are set. The language-specific
        // handler is called as part of the search for an exception handler or as part of an unwind.
        } else if flags & (UNW_FLAG_EHANDLER | UNW_FLAG_UHANDLER) != 0 {
            let offset = bytes.gread_with::<u32>(&mut offset, scroll::LE)? as usize;
            let data = &bytes[offset..];

            handler = Some(if flags & UNW_FLAG_EHANDLER != 0 {
                UnwindHandler::ExceptionHandler(offset as u32, data)
            } else {
                UnwindHandler::TerminationHandler(offset as u32, data)
            });
        }

        Ok(UnwindInfo {
            version,
            size_of_prolog,
            frame_register,
            frame_register_offset,
            chained_info,
            handler,
            code_bytes,
        })
    }

    /// Returns an iterator over unwind codes in this unwind info.
    ///
    /// Unwind codes are iterated in descending `code_offset` order suitable for unwinding. If the
    /// optional [`chained_info`] is present, codes of that unwind info should be interpreted
    /// immediately afterwards.
    pub fn unwind_codes(&self) -> UnwindCodeIterator<'a> {
        UnwindCodeIterator {
            bytes: self.code_bytes,
            offset: 0,
            context: UnwindOpContext {
                version: self.version,
                frame_register: self.frame_register,
            },
        }
    }
}

impl fmt::Debug for UnwindInfo<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let count_of_codes = self.code_bytes.len() / UNWIND_CODE_SIZE;

        f.debug_struct("UnwindInfo")
            .field("version", &self.version)
            .field("size_of_prolog", &self.size_of_prolog)
            .field("frame_register", &self.frame_register)
            .field("frame_register_offset", &self.frame_register_offset)
            .field("count_of_codes", &count_of_codes)
            .field("chained_info", &self.chained_info)
            .field("handler", &self.handler)
            .finish()
    }
}

impl<'a> IntoIterator for &'_ UnwindInfo<'a> {
    type Item = error::Result<UnwindCode>;
    type IntoIter = UnwindCodeIterator<'a>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.unwind_codes()
    }
}

/// Exception handling and stack unwind information for functions in the image.
pub struct ExceptionData<'a> {
    bytes: &'a [u8],
    offset: usize,
    size: usize,
    file_alignment: u32,
}

impl<'a> ExceptionData<'a> {
    /// Parses exception data from the image at the given offset.
    pub fn parse(
        bytes: &'a [u8],
        directory: data_directories::DataDirectory,
        sections: &[section_table::SectionTable],
        file_alignment: u32,
    ) -> error::Result<Self> {
        let size = directory.size as usize;

        if size % RUNTIME_FUNCTION_SIZE != 0 {
            Err(scroll::Error::BadInput {
                size,
                msg: "invalid exception directory table size",
            })?;
        }

        let rva = directory.virtual_address as usize;
        let offset = utils::find_offset(rva, sections, file_alignment).ok_or_else(|| {
            error::Error::Malformed(format!("cannot map exception_rva ({:#x}) into offset", rva))
        })?;

        if offset % 4 != 0 {
            Err(scroll::Error::BadOffset(offset))?;
        }

        Ok(ExceptionData {
            bytes,
            offset,
            size,
            file_alignment,
        })
    }

    /// The number of function entries described by this exception data.
    pub fn len(&self) -> usize {
        self.size / RUNTIME_FUNCTION_SIZE
    }

    /// Indicating whether there are functions in this entry.
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Iterates all function entries in order of their code offset.
    ///
    /// To search for a function by relative instruction address, use [`find_function`]. To resolve
    /// unwind information, use [`get_unwind_info`].
    ///
    /// [`find_function`]: struct.ExceptionData.html#method.find_function
    /// [`get_unwind_info`]: struct.ExceptionData.html#method.get_unwind_info
    pub fn functions(&self) -> RuntimeFunctionIterator<'a> {
        RuntimeFunctionIterator {
            data: &self.bytes[self.offset..self.offset + self.size],
        }
    }

    /// Returns the function at the given index.
    pub fn get_function(&self, index: usize) -> error::Result<RuntimeFunction> {
        self.get_function_by_offset(index * RUNTIME_FUNCTION_SIZE)
    }

    /// Performs a binary search to find a function entry covering the given RVA relative to the
    /// image.
    pub fn find_function(&self, rva: u32) -> error::Result<Option<RuntimeFunction>> {
        // NB: Binary search implementation copied from std::slice::binary_search_by and adapted.
        // Theoretically, there should be nothing that causes parsing runtime functions to fail and
        // all access to the bytes buffer is guaranteed to be in range. However, since all other
        // functions also return Results, this is much more ergonomic here.

        let mut size = self.len();
        if size == 0 {
            return Ok(None);
        }

        let mut base = 0;
        while size > 1 {
            let half = size / 2;
            let mid = base + half;
            let offset = self.offset + mid * RUNTIME_FUNCTION_SIZE;
            let addr = self.bytes.pread_with::<u32>(offset, scroll::LE)?;
            base = if addr > rva { base } else { mid };
            size -= half;
        }

        let offset = self.offset + base * RUNTIME_FUNCTION_SIZE;
        let addr = self.bytes.pread_with::<u32>(offset, scroll::LE)?;
        let function = match addr.cmp(&rva) {
            Ordering::Less | Ordering::Equal => self.get_function(base)?,
            Ordering::Greater if base == 0 => return Ok(None),
            Ordering::Greater => self.get_function(base - 1)?,
        };

        if function.end_address > rva {
            Ok(Some(function))
        } else {
            Ok(None)
        }
    }

    /// Resolves unwind information for the given function entry.
    pub fn get_unwind_info(
        &self,
        mut function: RuntimeFunction,
        sections: &[section_table::SectionTable],
    ) -> error::Result<UnwindInfo<'a>> {
        while function.unwind_info_address % 2 != 0 {
            let rva = (function.unwind_info_address & !1) as usize;
            function = self.get_function_by_rva(rva, sections)?;
        }

        let rva = function.unwind_info_address as usize;
        let offset = utils::find_offset(rva, sections, self.file_alignment).ok_or_else(|| {
            error::Error::Malformed(format!("cannot map unwind rva ({:#x}) into offset", rva))
        })?;

        UnwindInfo::parse(self.bytes, offset)
    }

    fn get_function_by_rva(
        &self,
        rva: usize,
        sections: &[section_table::SectionTable],
    ) -> error::Result<RuntimeFunction> {
        let offset = utils::find_offset(rva, sections, self.file_alignment).ok_or_else(|| {
            error::Error::Malformed(format!("cannot map exception rva ({:#x}) into offset", rva))
        })?;

        self.get_function_by_offset(offset)
    }

    #[inline]
    fn get_function_by_offset(&self, offset: usize) -> error::Result<RuntimeFunction> {
        debug_assert!(offset % RUNTIME_FUNCTION_SIZE == 0);
        debug_assert!(offset < self.size);

        Ok(self.bytes.pread_with(self.offset + offset, scroll::LE)?)
    }
}

impl fmt::Debug for ExceptionData<'_> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ExceptionData")
            .field("file_alignment", &self.file_alignment)
            .field("offset", &format_args!("{:#x}", self.offset))
            .field("size", &format_args!("{:#x}", self.size))
            .field("len", &self.len())
            .finish()
    }
}

impl<'a> IntoIterator for &'_ ExceptionData<'a> {
    type Item = error::Result<RuntimeFunction>;
    type IntoIter = RuntimeFunctionIterator<'a>;

    #[inline]
    fn into_iter(self) -> Self::IntoIter {
        self.functions()
    }
}