1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
//! Glyph User Interface
//!
//! Not your typical GUI library: Glyph UI is actually for implementing
//! text-based interfaces. In particular, its usage is designed to result in
//! maintainable applications even at large numbers of components by leveraging
//! [the Elm architecture].
//!
//! [the Elm architecture]: https://guide.elm-lang.org/architecture/
//!
//! # Examples
//!
//! Glyph UI's hello world isn't the most succinct, but that's a non-goal. With
//! that understanding, let's get started by setting up our imports:
//!
//! ```
//! use glyph_ui::{
//!     // Here we import the absolutely necessary items to implement the `Gui`
//!     // trait and start the `Runtime`
//!     prelude::*,
//!
//!     // The `view` module contains various premade views
//!     view::{
//!         // This gives us extensions to the `View` trait; we'll use two later
//!         prelude::*,
//!
//!         // Like all modules inside the `view` module (except `prelude`),
//!         // this contains a `View` trait implementer as well as a shorthand
//!         // for instantiating it. Some modules also have a `State` (think
//!         // "model") and/or other items for configuring the view's behavior
//!         text,
//!     },
//!
//!     // This type describes view-level events, which are not to be confused
//!     // with the Elm architecture's concept of "messages"
//!     event::Event,
//! };
//!
//! // We'll use this later for detecting specific keypresses
//! use keyboard_types::Key;
//! ```
//!
//! Next, let's define our model:
//!
//! ```
//! struct HelloWorld {
//!     // Keep track of whether it's time to exit the application
//!     shutdown: bool,
//! }
//! ```
//!
//! Now we can implement the [`Gui`](crate::Gui) trait for our model, which
//! describes what our view will look like, how to handle messages, and when to
//! exit the application:
//!
//! ```
//! # use glyph_ui::{
//! #    prelude::*,
//! #    event::Event,
//! #    view::{
//! #        prelude::*,
//! #        text,
//! #    },
//! # };
//! # use keyboard_types::Key;
//! # struct HelloWorld {
//! #     shutdown: bool,
//! # }
//! impl Gui for HelloWorld {
//!     // Our message type will be `bool`, which we'll set during updates to
//!     // to be read when queried about control flow
//!     type Message = bool;
//!
//!     // Glyph UI's event type has a variant in which a custom type can be
//!     // produced. This is a more advanced feature that we don't need at the
//!     // moment, so the unit type will do
//!     type Event = ();
//!
//!     // In this function, we build up our application's appearance by
//!     // combining views
//!     fn view(&mut self) -> element::View<Self::Event, Self::Message> {
//!         // It's about time we actually wrote the hello world part, isn't it?
//!         text::new("Hello, world!")
//!             // This is one of the two extension functions mentioned earlier.
//!             // It allows us to wrap a view in another view that makes it
//!             // easier to respond to events (not messages) in a custom manner
//!             .on_event(|e, _f| {
//!                 // Detect whether the user pressed the 'q' key, for "quit"
//!                 if let Event::Key(k) = e {
//!                     if let Key::Character(c) = &k.key {
//!                         if c == "q" {
//!                             // Views can produce multiple messages from a
//!                             // single event, but we only need to produce one
//!                             return Box::new(std::iter::once(true));
//!                         }
//!                     }
//!                 }
//!
//!                 // Some other key was pressed, so we produce no messages
//!                 Box::new(std::iter::empty())
//!             })
//!             // This is the second extension function. It turns a view into
//!             // a more generic object, which is useful for defining
//!             // abstraction layers between UI components. It also happens to
//!             // be the required return type of `Gui::view()`
//!             .into_element()
//!     }
//!
//!     // This function will only get called when there are new messages
//!     fn update(&mut self, m: Self::Message) {
//!         // Update our internal state
//!         self.shutdown = m;
//!     }
//!
//!     // This function gets called after `update`, which means it also only
//!     // runs when there are new messages
//!     fn control_flow(&self) -> ControlFlow {
//!         if self.shutdown {
//!             // If the user pressed 'q', we'll have received a message of
//!             // `true` in `update`, which means it's time to exit
//!             ControlFlow::Exit
//!         } else {
//!             // Otherwise, we continue to run the event loop, waiting until
//!             // the next message
//!             ControlFlow::Wait
//!         }
//!     }
//! }
//! ```
//!
//! Nearly there! The final piece is to create and start the
//! [`Runtime`](crate::Runtime), which we'll do now:
//!
//! ```no_run
//! # use glyph_ui::{
//! #    prelude::*,
//! #    event::Event,
//! #    view::{
//! #        prelude::*,
//! #        text,
//! #    },
//! # };
//! # use keyboard_types::Key;
//! # struct HelloWorld {
//! #     shutdown: bool,
//! # }
//! # impl Gui for HelloWorld {
//! #     type Message = bool;
//! #     type Event = ();
//! #     fn view(&mut self) -> element::View<Self::Event, Self::Message> {
//! #         text::new("Hello, world!")
//! #             .on_event(|e, _f| {
//! #                 if let Event::Key(k) = e {
//! #                     if let Key::Character(c) = &k.key {
//! #                         if c == "q" {
//! #                             return Box::new(std::iter::once(true));
//! #                         }
//! #                     }
//! #                 }
//! #                 Box::new(std::iter::empty())
//! #             })
//! #             .into_element()
//! #     }
//! #     fn update(&mut self, m: Self::Message) {
//! #         self.shutdown = m;
//! #     }
//! #     fn control_flow(&self) -> ControlFlow {
//! #         if self.shutdown {
//! #             ControlFlow::Exit
//! #         } else {
//! #             ControlFlow::Wait
//! #         }
//! #     }
//! # }
//! #[tokio::main]
//! async fn main() {
//!     // Instantiate our model
//!     let gui = HelloWorld {
//!         shutdown: false,
//!     };
//!
//!     // Create and start the runtime
//!     Runtime::new(gui, |task| tokio::spawn(task)).run().await;
//! }
//! ```
//!
//! Now if we compile and run our code, we'll see `Hello, world!` in the top
//! left corner of our terminal, and we'll get our shell back if we press the
//! `q` key. For more examples that demonstrate more complex applications, see
//! [here](https://forge.typ3.tech/charles/glyph_ui/-/tree/master/examples).

use std::sync::Arc;

use parking_lot::Mutex;

mod command;
pub mod event;
mod gui;
mod printer;
mod runtime;
pub mod unit;
pub mod view;
mod view_trait;

/// Prelude for commonly used items
pub mod prelude {
    pub use crate::{view::element, ControlFlow, Gui, Runtime};
}

pub use gui::Gui;
pub use printer::{OutOfBounds, Printer};
pub use runtime::{ControlFlow, Runtime};
pub use view_trait::View;

pub(crate) type Amv<T> = Arc<Mutex<Vec<T>>>;
pub(crate) type Am<T> = Arc<Mutex<T>>;
pub(crate) use command::{Command, CommandBuf};