1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
use std::any::{Any, TypeId};
use std::cell::Cell;
use std::cmp::Ordering;
use std::collections::hash_map::Entry;
use std::collections::VecDeque;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::ptr;
use std::sync::Arc;

use crate::base::fnv::FnvMap;
use crate::interner::InternedStr;
use crate::types::VmIndex;
use crate::{Error, Result};

#[inline]
unsafe fn allocate(size: usize) -> *mut u8 {
    // Allocate an extra element if it does not fit exactly
    let cap = size / mem::size_of::<f64>()
        + (if size % mem::size_of::<f64>() != 0 {
            1
        } else {
            0
        });
    ptr_from_vec(Vec::<f64>::with_capacity(cap))
}

#[inline]
fn ptr_from_vec(mut buf: Vec<f64>) -> *mut u8 {
    let ptr = buf.as_mut_ptr();
    mem::forget(buf);

    ptr as *mut u8
}

#[inline]
unsafe fn deallocate(ptr: *mut u8, old_size: usize) {
    let cap = old_size / mem::size_of::<f64>()
        + (if old_size % mem::size_of::<f64>() != 0 {
            1
        } else {
            0
        });
    Vec::<f64>::from_raw_parts(ptr as *mut f64, 0, cap);
}

/// Pointer type which can only be written to.
pub struct WriteOnly<'s, T: ?Sized + 's>(*mut T, PhantomData<&'s mut T>);

impl<'s, T: ?Sized> WriteOnly<'s, T> {
    /// Unsafe as the lifetime must not be longer than the liftime of `t`
    unsafe fn new(t: *mut T) -> WriteOnly<'s, T> {
        WriteOnly(t, PhantomData)
    }

    /// Retrieves the pointer allowing it to be manipulated freely.
    /// As it points to uninitialized data care must be taken so to not read it before it has been
    /// initialized
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.0
    }
}

impl<'s, T> WriteOnly<'s, T> {
    /// Writes a value to the pointer and returns a pointer to the now initialized value.
    pub fn write(self, t: T) -> &'s mut T {
        unsafe {
            ptr::write(self.0, t);
            &mut *self.0
        }
    }
}

impl<'s, T: Copy> WriteOnly<'s, [T]> {
    pub fn write_slice(self, s: &[T]) -> &'s mut [T] {
        let self_ = unsafe { &mut *self.0 };
        assert!(s.len() == self_.len());
        for (to, from) in self_.iter_mut().zip(s) {
            *to = *from;
        }
        self_
    }
}

impl<'s> WriteOnly<'s, str> {
    pub fn write_str(self, s: &str) -> &'s mut str {
        unsafe {
            let ptr: &mut [u8] = mem::transmute::<*mut str, &mut [u8]>(self.0);
            assert!(s.len() == ptr.len());
            for (to, from) in ptr.iter_mut().zip(s.as_bytes()) {
                *to = *from;
            }
            &mut *self.0
        }
    }
}

#[derive(Clone, Copy, Default, Debug)]
#[cfg_attr(feature = "serde_derive", derive(Deserialize, Serialize))]
pub struct Generation(i32);

impl Generation {
    pub fn is_root(self) -> bool {
        self.0 == 0
    }

    /// Returns a generation which compared to any normal generation is always younger.
    pub fn disjoint() -> Generation {
        Generation(-1)
    }

    /// Returns wheter `self` is a parent of the other generation.
    pub fn is_parent_of(self, other: Generation) -> bool {
        self.0 < other.0
    }

    /// Returns true if `self` can contain a value from generation `other`
    pub fn can_contain_values_from(self, other: Generation) -> bool {
        other.0 <= self.0
    }

    pub fn next(self) -> Generation {
        assert!(
            self.0 < i32::max_value(),
            "To many generations has been created"
        );
        Generation(self.0 + 1)
    }
}

/// A mark and sweep garbage collector.
#[derive(Debug)]
#[cfg_attr(feature = "serde_derive", derive(DeserializeState, SerializeState))]
#[cfg_attr(
    feature = "serde_derive",
    serde(deserialize_state = "crate::serialization::DeSeed")
)]
#[cfg_attr(
    feature = "serde_derive",
    serde(serialize_state = "crate::serialization::SeSeed")
)]
pub struct Gc {
    /// Linked list of all objects allocted by this garbage collector.
    #[cfg_attr(feature = "serde_derive", serde(skip))]
    values: Option<AllocPtr>,
    /// How many bytes which is currently allocated
    allocated_memory: usize,
    /// How many bytes this garbage collector can allocate before a collection is run
    collect_limit: usize,
    /// The maximum number of bytes this garbage collector may contain
    memory_limit: usize,
    #[cfg_attr(feature = "serde_derive", serde(skip))]
    type_infos: FnvMap<TypeId, Box<TypeInfo>>,
    #[cfg_attr(feature = "serde_derive", serde(skip))]
    record_infos: FnvMap<Vec<InternedStr>, Box<TypeInfo>>,
    #[cfg_attr(feature = "serde_derive", serde(skip))]
    tag_infos: FnvMap<InternedStr, Box<TypeInfo>>,
    /// The generation of a gc determines what values it needs to copy and what values it can
    /// share. A gc can share values generated by itself (the same generation) and those in an
    /// earlier (lower) generation. It is important to note that two garbage collectors can have
    /// the same value as their generation but that does not mean that they can share values. This
    /// is only enforced in that values can only be shared up or down the tree of generations.
    ///
    /// Example:
    ///           0
    ///          / \
    ///         1   1
    ///        /   / \
    ///       2   2   2
    /// Generations 2 can share values with anything above them in the tree so refering to anything
    /// of generation 1 or 0 does not require a copy. Generation 1 can only share values with
    /// generation 0 so if a generation two value is shared up the tree it needs to be cloned.
    ///
    /// Between the generation 2 garbage collectors no values can be directly shared as they could
    /// only refer to each other through some reference or channel allocated in generation 0 (and
    /// if they do interact with eachother this means the values are cloned into generation 0).
    generation: Generation,
}

/// Trait which creates a typed pointer from a *mut () pointer.
/// For `Sized` types this is just a cast but for unsized types some more metadata must be taken
/// from the provided `D` value to make it initialize correctly.
pub unsafe trait FromPtr<D> {
    unsafe fn make_ptr(data: D, ptr: *mut ()) -> *mut Self;
}

unsafe impl<D, T> FromPtr<D> for T {
    unsafe fn make_ptr(_: D, ptr: *mut ()) -> *mut Self {
        ptr as *mut Self
    }
}

unsafe impl<'s, 't, T> FromPtr<&'s &'t [T]> for [T] {
    unsafe fn make_ptr(v: &'s &'t [T], ptr: *mut ()) -> *mut [T] {
        ::std::slice::from_raw_parts_mut(ptr as *mut T, v.len())
    }
}

/// A definition of some data which may be allocated by the garbage collector.
pub unsafe trait DataDef {
    /// The type of the value allocated.
    type Value: ?Sized + for<'a> FromPtr<&'a Self>;
    /// Returns how many bytes need to be allocted for this `DataDef`
    fn size(&self) -> usize;
    /// Consumes `self` to initialize the allocated value.
    /// Returns the initialized pointer.
    fn initialize<'w>(self, ptr: WriteOnly<'w, Self::Value>) -> &'w mut Self::Value;

    fn fields(&self) -> Option<&[InternedStr]> {
        None
    }

    fn tag(&self) -> Option<InternedStr> {
        None
    }
}

/// `DataDef` that moves its value directly into the pointer
/// useful for sized types
pub struct Move<T>(pub T);

unsafe impl<T> DataDef for Move<T> {
    type Value = T;
    fn size(&self) -> usize {
        mem::size_of::<T>()
    }
    fn initialize(self, result: WriteOnly<T>) -> &mut T {
        result.write(self.0)
    }
}

#[derive(Debug)]
struct TypeInfo {
    drop: unsafe fn(*mut ()),
    generation: Generation,
    tag: Option<InternedStr>,
    fields: FnvMap<InternedStr, VmIndex>,
    fields_key: Arc<Vec<InternedStr>>,
}

#[derive(Debug)]
struct GcHeader {
    next: Option<AllocPtr>,
    marked: Cell<bool>,
    value_size: usize,
    type_info: *const TypeInfo,
}

struct AllocPtr {
    ptr: *mut GcHeader,
}

unsafe impl Send for AllocPtr {}

impl AllocPtr {
    fn new<T>(type_info: *const TypeInfo, value_size: usize) -> AllocPtr {
        fn new(type_info: *const TypeInfo, value_size: usize) -> AllocPtr {
            unsafe {
                let alloc_size = GcHeader::value_offset() + value_size;
                let ptr = allocate(alloc_size) as *mut GcHeader;
                ptr::write(
                    ptr,
                    GcHeader {
                        next: None,
                        type_info: type_info,
                        value_size: value_size,
                        marked: Cell::new(false),
                    },
                );
                AllocPtr { ptr }
            }
        }
        debug_assert!(mem::align_of::<T>() <= mem::align_of::<f64>());
        new(type_info, value_size)
    }

    fn size(&self) -> usize {
        GcHeader::value_offset() + self.value_size
    }
}

impl fmt::Debug for AllocPtr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "AllocPtr {{ ptr: {:?} }}", &**self)
    }
}

impl Drop for AllocPtr {
    fn drop(&mut self) {
        unsafe {
            // Avoid stack overflow by looping through all next pointers instead of doing it
            // recursively
            let mut current = self.next.take();
            while let Some(mut next) = current {
                current = next.next.take();
            }
            let size = self.size();
            ((*self.type_info).drop)(self.value());
            ptr::read(&*self.ptr);
            deallocate(self.ptr as *mut u8, size);
        }
    }
}

impl Deref for AllocPtr {
    type Target = GcHeader;
    fn deref(&self) -> &GcHeader {
        unsafe { &*self.ptr }
    }
}

impl DerefMut for AllocPtr {
    fn deref_mut(&mut self) -> &mut GcHeader {
        unsafe { &mut *self.ptr }
    }
}

impl GcHeader {
    fn value(&mut self) -> *mut () {
        unsafe {
            let ptr: *mut GcHeader = self;
            (ptr as *mut u8).offset(GcHeader::value_offset() as isize) as *mut ()
        }
    }

    fn value_offset() -> usize {
        let hs = mem::size_of::<GcHeader>();
        let max_align = mem::align_of::<f64>();
        hs + ((max_align - (hs % max_align)) % max_align)
    }

    fn generation(&self) -> Generation {
        unsafe { (*self.type_info).generation }
    }
}

/// A pointer to a garbage collected value.
///
/// It is only safe to access data through a `GcPtr` if the value is rooted (stored in a place
/// where the garbage collector will find it during the mark phase).
pub struct GcPtr<T: ?Sized> {
    // TODO Use NonZero to allow for better optimizing
    ptr: *const T,
}

unsafe impl<T: ?Sized + Send + Sync> Send for GcPtr<T> {}
unsafe impl<T: ?Sized + Send + Sync> Sync for GcPtr<T> {}

impl<T: ?Sized> Copy for GcPtr<T> {}

impl<T: ?Sized> Clone for GcPtr<T> {
    fn clone(&self) -> GcPtr<T> {
        GcPtr { ptr: self.ptr }
    }
}

impl<T: ?Sized> Deref for GcPtr<T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { &*self.ptr }
    }
}

impl<T: ?Sized> ::std::borrow::Borrow<T> for GcPtr<T> {
    fn borrow(&self) -> &T {
        &**self
    }
}

impl<T: ?Sized + Eq> Eq for GcPtr<T> {}
impl<T: ?Sized + PartialEq> PartialEq for GcPtr<T> {
    fn eq(&self, other: &GcPtr<T>) -> bool {
        **self == **other
    }
}

impl<T: ?Sized + Ord> Ord for GcPtr<T> {
    fn cmp(&self, other: &GcPtr<T>) -> Ordering {
        (**self).cmp(&**other)
    }
}
impl<T: ?Sized + PartialOrd> PartialOrd for GcPtr<T> {
    fn partial_cmp(&self, other: &GcPtr<T>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }
}

impl<T: ?Sized + Hash> Hash for GcPtr<T> {
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        (**self).hash(state)
    }
}
impl<T: ?Sized + fmt::Debug> fmt::Debug for GcPtr<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}
impl<T: ?Sized + fmt::Display> fmt::Display for GcPtr<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        (**self).fmt(f)
    }
}

impl<T: ?Sized> GcPtr<T> {
    /// Unsafe as it is up to the caller to ensure that this pointer is not referenced somewhere
    /// else
    pub unsafe fn as_mut(&mut self) -> &mut T {
        &mut *(self.ptr as *mut T)
    }

    /// Unsafe as `ptr` must have been allocted by this garbage collector
    pub unsafe fn from_raw(ptr: *const T) -> GcPtr<T> {
        GcPtr { ptr }
    }

    pub fn generation(&self) -> Generation {
        self.header().generation()
    }

    pub fn poly_tag(&self) -> Option<InternedStr> {
        self.type_info().tag
    }

    pub fn field_map(&self) -> &FnvMap<InternedStr, VmIndex> {
        &self.type_info().fields
    }

    pub fn field_names(&self) -> &Arc<Vec<InternedStr>> {
        &self.type_info().fields_key
    }

    fn type_info(&self) -> &TypeInfo {
        unsafe { &*self.header().type_info }
    }

    pub fn ptr_eq(self, other: GcPtr<T>) -> bool {
        ptr::eq(&*self, &*other)
    }

    fn header(&self) -> &GcHeader {
        // Use of transmute_copy allows us to get the pointer
        // to the data regardless of wether T is unsized or not
        // (DST is structured as (ptr, len))
        // This function should always be safe to call as GcPtr's should always have a header
        // TODO: Better way of doing this?
        unsafe {
            let p: *mut u8 = mem::transmute_copy(&self.ptr);
            let header = p.offset(-(GcHeader::value_offset() as isize));
            &*(header as *const GcHeader)
        }
    }
}

impl<'a, T: Traverseable + Send + Sync + 'a> GcPtr<T> {
    /// Coerces `self` to a `Traverseable` trait object
    pub fn as_traverseable(self) -> GcPtr<Traverseable + Send + Sync + 'a> {
        GcPtr {
            ptr: self.ptr as *const (Traverseable + Send + Sync),
        }
    }
}
impl GcPtr<str> {
    /// Coerces `self` to a `Traverseable` trait object
    pub fn as_traverseable_string(self) -> GcPtr<Traverseable + Send + Sync> {
        // As there is nothing to traverse in a str we can safely cast it to *const u8 and use
        // u8's Traverseable impl
        GcPtr {
            ptr: self.as_ptr() as *const (Traverseable + Send + Sync),
        }
    }
}

pub trait CollectScope {
    fn scope<F>(&self, gc: &mut Gc, f: F)
    where
        F: FnOnce(&mut Gc);
}

/// Trait which must be implemented on all root types which contain `GcPtr`
/// A type implementing Traverseable must call traverse on each of its fields
/// which in turn contains `GcPtr`
pub trait Traverseable {
    fn traverse(&self, gc: &mut Gc) {
        let _ = gc;
    }
}

impl<T> Traverseable for Move<T>
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        self.0.traverse(gc)
    }
}

impl<T: ?Sized> Traverseable for Box<T>
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        (**self).traverse(gc)
    }
}

impl<'a, T: ?Sized> Traverseable for &'a T
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        (**self).traverse(gc);
    }
}

impl<'a, T: ?Sized> Traverseable for &'a mut T
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        (**self).traverse(gc);
    }
}

macro_rules! tuple_traverse {
    () => {};
    ($first: ident $($id: ident)*) => {
        tuple_traverse!($($id)*);
        impl <$first $(,$id)*> Traverseable for ($first, $($id,)*)
            where $first: Traverseable
                  $(, $id: Traverseable)* {
            #[allow(non_snake_case)]
            fn traverse(&self, gc: &mut Gc) {
                let (ref $first, $(ref $id,)*) = *self;
                $first.traverse(gc);
                $(
                    $id.traverse(gc);
                )*
            }
        }
    }
}

tuple_traverse!(A B C D E F G H I J);

macro_rules! empty_traverse {
    ($($id: ty)*) => {
        $(impl Traverseable for $id {
            fn traverse(&self, _: &mut Gc) {}
        })*
    }
}

empty_traverse! { () Any u8 u16 u32 u64 usize i8 i16 i32 i64 isize f32 f64 str }

impl<T: ?Sized> Traverseable for *const T {
    fn traverse(&self, _: &mut Gc) {}
}

impl<T: ?Sized> Traverseable for *mut T {
    fn traverse(&self, _: &mut Gc) {}
}

impl<T> Traverseable for Cell<T>
where
    T: Traverseable + Copy,
{
    fn traverse(&self, f: &mut Gc) {
        self.get().traverse(f);
    }
}

impl<U> Traverseable for [U]
where
    U: Traverseable,
{
    fn traverse(&self, f: &mut Gc) {
        for x in self.iter() {
            x.traverse(f);
        }
    }
}

impl<T> Traverseable for Vec<T>
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        (**self).traverse(gc);
    }
}

impl<T> Traverseable for VecDeque<T>
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        self.as_slices().traverse(gc);
    }
}

/// When traversing a `GcPtr` we need to mark it
impl<T: ?Sized> Traverseable for GcPtr<T>
where
    T: Traverseable,
{
    fn traverse(&self, gc: &mut Gc) {
        if !gc.mark(*self) {
            // Continue traversing if this ptr was not already marked
            (**self).traverse(gc);
        }
    }
}

impl Gc {
    /// Constructs a new garbage collector
    pub fn new(generation: Generation, memory_limit: usize) -> Gc {
        Gc {
            values: None,
            allocated_memory: 0,
            collect_limit: 100,
            memory_limit: memory_limit,
            type_infos: FnvMap::default(),
            record_infos: FnvMap::default(),
            tag_infos: FnvMap::default(),
            generation: generation,
        }
    }

    pub fn allocated_memory(&self) -> usize {
        self.allocated_memory
    }

    pub fn set_memory_limit(&mut self, memory_limit: usize) {
        self.memory_limit = memory_limit;
    }

    pub fn generation(&self) -> Generation {
        self.generation
    }

    pub fn new_child_gc(&self) -> Gc {
        Gc::new(self.generation.next(), self.memory_limit)
    }

    /// Allocates a new object. If the garbage collector has hit the collection limit a collection
    /// will occur.
    ///
    /// Unsafe since `roots` must be able to traverse all accesible `GcPtr` values.
    pub unsafe fn alloc_and_collect<R, D>(&mut self, roots: R, def: D) -> Result<GcPtr<D::Value>>
    where
        R: Traverseable + CollectScope,
        D: DataDef + Traverseable,
        D::Value: Sized + Any,
    {
        struct Scope1<A, B>(A, B);

        impl<A, B> Traverseable for Scope1<A, B>
        where
            A: Traverseable,
            B: Traverseable,
        {
            fn traverse(&self, gc: &mut Gc) {
                (&self.0, &self.1).traverse(gc);
            }
        }

        impl<A, B> CollectScope for Scope1<A, B>
        where
            A: CollectScope,
        {
            fn scope<F>(&self, gc: &mut Gc, f: F)
            where
                F: FnOnce(&mut Gc),
            {
                self.0.scope(gc, f)
            }
        }

        self.check_collect(Scope1(roots, &def));
        self.alloc(def)
    }

    /// Allocates a new object.
    pub fn alloc<D>(&mut self, def: D) -> Result<GcPtr<D::Value>>
    where
        D: DataDef,
        D::Value: Sized + Any,
    {
        let size = def.size();
        let needed = self.allocated_memory.saturating_add(size);
        if needed >= self.memory_limit {
            return Err(Error::OutOfMemory {
                limit: self.memory_limit,
                needed: needed,
            });
        }
        Ok(self.alloc_ignore_limit_(size, def))
    }

    pub fn alloc_ignore_limit<D>(&mut self, def: D) -> GcPtr<D::Value>
    where
        D: DataDef,
        D::Value: Sized + Any,
    {
        self.alloc_ignore_limit_(def.size(), def)
    }

    fn get_type_info(
        &mut self,
        tag: Option<InternedStr>,
        fields: Option<&[InternedStr]>,
        type_id: TypeId,
        drop: unsafe fn(*mut ()),
    ) -> *const TypeInfo {
        match fields {
            Some(fields) => match self
                .record_infos
                .get(fields)
                .map(|info| &**info as *const _)
            {
                Some(info) => info,
                None => &**self
                    .record_infos
                    .entry(fields.to_owned())
                    .or_insert(Box::new(TypeInfo {
                        drop,
                        generation: self.generation,
                        tag,
                        fields: fields
                            .iter()
                            .enumerate()
                            .map(|(i, s)| (*s, i as VmIndex))
                            .collect(),
                        fields_key: Arc::new(fields.to_owned()),
                    })),
            },
            None => match tag {
                Some(tag) => match self.tag_infos.entry(tag) {
                    Entry::Occupied(entry) => &**entry.get(),
                    Entry::Vacant(entry) => &**entry.insert(Box::new(TypeInfo {
                        drop,
                        generation: self.generation,
                        tag: Some(tag),
                        fields: FnvMap::default(),
                        fields_key: Arc::new(Vec::new()),
                    })),
                },
                None => match self.type_infos.entry(type_id) {
                    Entry::Occupied(entry) => &**entry.get(),
                    Entry::Vacant(entry) => &**entry.insert(Box::new(TypeInfo {
                        drop,
                        generation: self.generation,
                        tag,
                        fields: FnvMap::default(),
                        fields_key: Arc::new(Vec::new()),
                    })),
                },
            },
        }
    }

    fn alloc_ignore_limit_<D>(&mut self, size: usize, def: D) -> GcPtr<D::Value>
    where
        D: DataDef,
        D::Value: Sized + Any,
    {
        unsafe fn drop<T>(t: *mut ()) {
            ptr::drop_in_place(t as *mut T);
        }

        let type_info = self.get_type_info(
            def.tag(),
            def.fields(),
            TypeId::of::<D::Value>(),
            drop::<D::Value>,
        );

        let mut ptr = AllocPtr::new::<D::Value>(type_info, size);
        ptr.next = self.values.take();
        self.allocated_memory += ptr.size();
        unsafe {
            let p: *mut D::Value = D::Value::make_ptr(&def, ptr.value());
            let ret: *const D::Value = &*def.initialize(WriteOnly::new(p));
            // Check that the returned pointer is the same as the one we sent as an extra precaution
            // that the pointer was initialized
            assert!(ret == p);
            self.values = Some(ptr);
            GcPtr { ptr: p }
        }
    }

    pub unsafe fn check_collect<R>(&mut self, roots: R) -> bool
    where
        R: Traverseable + CollectScope,
    {
        if self.allocated_memory >= self.collect_limit {
            self.collect(roots);
            true
        } else {
            false
        }
    }

    /// Does a mark and sweep collection by walking from `roots`. This function is unsafe since
    /// roots need to cover all reachable object.
    pub unsafe fn collect<R>(&mut self, roots: R)
    where
        R: Traverseable + CollectScope,
    {
        info!("Start collect {:?}", self.generation);
        roots.scope(self, |self_| {
            roots.traverse(self_);
            self_.sweep();
            self_.collect_limit = 2 * self_.allocated_memory;
        })
    }

    /// Marks the GcPtr
    /// Returns true if the pointer was already marked
    pub fn mark<T: ?Sized>(&mut self, value: GcPtr<T>) -> bool {
        let header = value.header();
        // We only need to mark and traverse values from this garbage collectors generation
        if header.generation().is_parent_of(self.generation()) || header.marked.get() {
            true
        } else {
            header.marked.set(true);
            false
        }
    }

    /// Clears out any unmarked pointers and resets marked pointers.
    ///
    /// Unsafe as it is up to the caller to make sure that all reachable pointers have been marked
    pub unsafe fn sweep(&mut self) {
        fn moving<T>(t: T) -> T {
            t
        }

        let mut count = 0;
        let mut free_count = 0;

        let mut first = self.values.take();
        {
            // Pointer to the current pointer (if it exists)
            let mut maybe_header = &mut first;
            loop {
                let mut free = false;
                let mut replaced_next = None;
                match *maybe_header {
                    Some(ref mut header) => {
                        // If the current pointer is not marked we take the rest of the list and
                        // move it to `replaced_next`
                        if !header.marked.get() {
                            replaced_next = header.next.take();
                            free = true;
                        } else {
                            header.marked.set(false);
                        }
                    }
                    // Reached the end of the list
                    None => break,
                }
                count += 1;
                if free {
                    free_count += 1;
                    // Free the current pointer
                    self.free(maybe_header.take());
                    *maybe_header = replaced_next;
                } else {
                    // Just move to the next pointer
                    maybe_header = &mut moving(maybe_header).as_mut().unwrap().next;
                }
            }
        }
        info!("GC: Freed {} / Traversed {}", free_count, count);
        self.values = first;
    }

    fn free(&mut self, header: Option<AllocPtr>) {
        if let Some(ref ptr) = header {
            self.allocated_memory -= ptr.size();
        }
        debug!("FREE: {:?}", header);
        drop(header);
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::cell::Cell;
    use std::fmt;
    use std::mem;
    use std::rc::Rc;
    use std::usize;

    use self::Value::*;

    impl CollectScope for () {
        fn scope<F>(&self, gc: &mut Gc, f: F)
        where
            F: FnOnce(&mut Gc),
        {
            f(gc)
        }
    }

    impl<'a, T> CollectScope for &'a mut [T] {
        fn scope<F>(&self, gc: &mut Gc, f: F)
        where
            F: FnOnce(&mut Gc),
        {
            f(gc)
        }
    }

    fn object_count(gc: &Gc) -> usize {
        let mut header: &GcHeader = match gc.values {
            Some(ref x) => &**x,
            None => return 0,
        };
        let mut count = 1;
        loop {
            match header.next {
                Some(ref ptr) => {
                    count += 1;
                    header = &**ptr;
                }
                None => break,
            }
        }
        count
    }

    #[derive(Copy, Clone)]
    struct Data_ {
        fields: GcPtr<Vec<Value>>,
    }

    impl PartialEq for Data_ {
        fn eq(&self, other: &Data_) -> bool {
            self.fields.ptr == other.fields.ptr
        }
    }
    impl fmt::Debug for Data_ {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            self.fields.ptr.fmt(f)
        }
    }

    struct Def<'a> {
        elems: &'a [Value],
    }
    unsafe impl<'a> DataDef for Def<'a> {
        type Value = Vec<Value>;
        fn size(&self) -> usize {
            mem::size_of::<Self::Value>()
        }
        fn initialize(self, result: WriteOnly<Vec<Value>>) -> &mut Vec<Value> {
            result.write(self.elems.to_owned())
        }
    }

    #[derive(Copy, Clone, PartialEq, Debug)]
    enum Value {
        Int(i32),
        Data(Data_),
    }

    impl Traverseable for Value {
        fn traverse(&self, gc: &mut Gc) {
            match *self {
                Data(ref data) => data.fields.traverse(gc),
                _ => (),
            }
        }
    }

    fn new_data(p: GcPtr<Vec<Value>>) -> Value {
        Data(Data_ { fields: p })
    }

    #[test]
    fn gc_header() {
        let mut gc: Gc = Gc::new(Generation::default(), usize::MAX);
        let ptr = gc.alloc(Def { elems: &[Int(1)] }).unwrap();
        let header: *const _ = ptr.header();
        let other: &mut GcHeader = gc.values.as_mut().unwrap();
        assert_eq!(&*ptr as *const _ as *const (), other.value());
        assert_eq!(header, other as *const _);
    }

    #[test]
    fn basic() {
        let mut gc: Gc = Gc::new(Generation::default(), usize::MAX);
        let mut stack: Vec<Value> = Vec::new();
        stack.push(new_data(gc.alloc(Def { elems: &[Int(1)] }).unwrap()));
        let d2 = new_data(gc.alloc(Def { elems: &[stack[0]] }).unwrap());
        stack.push(d2);
        assert_eq!(object_count(&gc), 2);
        unsafe {
            gc.collect(&mut *stack);
        }
        assert_eq!(object_count(&gc), 2);
        match stack[0] {
            Data(ref data) => assert_eq!(data.fields[0], Int(1)),
            _ => ice!(),
        }
        match stack[1] {
            Data(ref data) => assert_eq!(data.fields[0], stack[0]),
            _ => ice!(),
        }
        stack.pop();
        stack.pop();
        unsafe {
            gc.collect(&mut *stack);
        }
        assert_eq!(object_count(&gc), 0);
    }

    pub struct Dropable {
        dropped: Rc<Cell<bool>>,
    }

    impl Drop for Dropable {
        fn drop(&mut self) {
            self.dropped.set(true);
        }
    }

    #[test]
    fn drop() {
        let dropped = Rc::new(Cell::new(false));
        let mut gc = Gc::new(Generation::default(), usize::MAX);
        {
            let ptr = gc
                .alloc(Move(Dropable {
                    dropped: dropped.clone(),
                }))
                .unwrap();
            assert_eq!(false, ptr.dropped.get());
        }
        assert_eq!(false, dropped.get());
        unsafe {
            gc.collect(());
        }
        assert_eq!(true, dropped.get());
    }
}