1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
use std::f64::consts::PI;

#[derive(Debug, Clone, Copy)]
pub struct GlobalMercator {
    tile_size: u32,
    initial_resolution: f64,
    origin_shift: f64,
}

impl Default for GlobalMercator {
    fn default() -> Self {
        GlobalMercator::new(256)
    }
}

impl GlobalMercator {
    // Initialize the TMS Global Mercator pyramid
    pub fn new(tile_size: u32) -> GlobalMercator {
        GlobalMercator {
            tile_size,
            initial_resolution: 2.0 * PI * 6378137.0 / tile_size as f64,
            // 156543.03392804062 for tile_size 256 pixels
            origin_shift: 2.0 * PI * 6378137.0 / 2.0,
            // 20037508.342789244
        }
    }

    pub fn tile_size(&self) -> u32 {
        self.tile_size
    }

    pub fn lat_lon_to_meters(&self, lat: f64, lon: f64) -> (f64, f64) {
        // "Converts given lat/lon in WGS84 Datum to XY in Spherical Mercator EPSG:900913"

        let mx = lon * self.origin_shift / 180.0;
        let my = f64::ln(f64::tan((90.0 + lat) * PI / 360.0)) / (PI / 180.0);

        let my = my * self.origin_shift / 180.0;
        return (mx, my);
    }

    pub fn meters_to_lat_lon(&self, mx: f64, my: f64) -> (f64, f64) {
        // "Converts XY point from Spherical Mercator EPSG:900913 to lat/lon in WGS84 Datum"

        let lon = (mx / self.origin_shift) * 180.0;
        let lat = (my / self.origin_shift) * 180.0;

        let lat = 180.0 / PI * (2.0 * f64::atan(f64::exp(lat * PI / 180.0)) - PI / 2.0);
        return (lat, lon);
    }

    pub fn pixels_to_meters(&self, px: f64, py: f64, zoom: u32) -> (f64, f64) {
        // "Converts pixel coordinates in given zoom level of pyramid to EPSG:900913"

        let res = self.resolution(zoom);
        let mx = px * res - self.origin_shift;
        let my = py * res - self.origin_shift;
        return (mx, my);
    }

    pub fn meters_to_pixels(&self, mx: f64, my: f64, zoom: u32) -> (f64, f64) {
        // "Converts EPSG:900913 to pyramid pixel coordinates in given zoom level"

        let res = self.resolution(zoom);
        let px = (mx + self.origin_shift) / res;
        let py = (my + self.origin_shift) / res;
        return (px, py);
    }

    pub fn pixels_to_tile(&self, px: f64, py: f64) -> (i32, i32) {
        // "Returns a tile covering region in given pixel coordinates"

        let tx = f64::ceil(px / self.tile_size as f64) as i32 - 1;
        let ty = f64::ceil(py / self.tile_size as f64) as i32 - 1;
        return (tx, ty);
    }

    pub fn pixels_to_raster(&self, px: f64, py: f64, zoom: u32) -> (f64, f64) {
        // "Move the origin of pixel coordinates to top-left corner"

        let map_size = self.tile_size << zoom;
        return (px, map_size as f64 - py);
    }

    pub fn meters_to_tile(&self, mx: f64, my: f64, zoom: u32) -> (i32, i32) {
        // "Returns tile for given mercator coordinates"

        let (px, py) = self.meters_to_pixels(mx, my, zoom);
        return self.pixels_to_tile(px, py);
    }

    pub fn tile_bounds(&self, tx: i32, ty: i32, zoom: u32) -> (f64, f64, f64, f64) {
        // "Returns bounds of the given tile in EPSG:900913 coordinates"

        let (minx, miny) = self.pixels_to_meters(
            (tx * self.tile_size as i32) as f64,
            (ty * self.tile_size as i32) as f64,
            zoom,
        );
        let (maxx, maxy) = self.pixels_to_meters(
            ((tx + 1) * self.tile_size as i32) as f64,
            ((ty + 1) * self.tile_size as i32) as f64,
            zoom,
        );
        return (minx, miny, maxx, maxy);
    }

    pub fn tile_lat_lon_bounds(&self, tx: i32, ty: i32, zoom: u32) -> (f64, f64, f64, f64) {
        // "Returns bounds of the given tile in latutude/longitude using WGS84 datum"

        let (minx, miny, maxx, maxy) = self.tile_bounds(tx, ty, zoom);
        let (min_lat, min_lon) = self.meters_to_lat_lon(minx, miny);
        let (max_lat, max_lon) = self.meters_to_lat_lon(maxx, maxy);

        return (min_lat, min_lon, max_lat, max_lon);
    }

    pub fn resolution(&self, zoom: u32) -> f64 {
        // "resolution (meters/pixel) for given zoom level (measured at Equator)"

        // return (2 * PI * 6378137) / (self.tile_size * 2**zoom)
        return self.initial_resolution / f64::powi(2.0, zoom as i32);
    }

    pub fn zoom_for_pixel_size(&self, pixel_size: f64) -> u32 {
        // "Maximal scaledown zoom of the pyramid closest to the pixel_size."

        for i in 0..30 {
            if pixel_size > self.resolution(i) {
                return if i != 0 {
                    i - 1
                } else {
                    0 // We don't want to scale up
                };
            }
        }

        panic!("Invalid pixel_size: {}", pixel_size);
    }

    pub fn google_tile(&self, tx: i32, ty: i32, zoom: u32) -> (i32, i32) {
        // "Converts TMS tile coordinates to Google Tile coordinates"

        // coordinate origin is moved from bottom-left to top-left corner of the extent
        return (tx, (f64::powi(2.0, zoom as i32) as i32 - 1) - ty);
    }

    pub fn quad_tree(&self, tx: i32, ty: i32, zoom: u32) -> String {
        // "Converts TMS tile coordinates to Microsoft quad_tree"

        let mut quad_key = String::new();
        let ty = (f64::powi(2.0, zoom as i32) - 1.0) as i32 - ty;
        for i in (1..(zoom + 1) as i32).rev() {
            let mut digit = 0;
            let mask = 1 << (i - 1);
            if (tx & mask) != 0 {
                digit += 1;
            }
            if (ty & mask) != 0 {
                digit += 2;
            }
            quad_key.push_str(format!("{}", digit).as_str());
        }

        return quad_key;
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const EPSILON_SCALE: f64 = 7_000_000.0;

    #[test]
    fn test_default() {
        assert_eq!(GlobalMercator::default().tile_size, 256);
    }

    #[test]
    fn test_new() {
        assert_eq!(GlobalMercator::new(256).tile_size, 256);
    }

    #[test]
    fn test_lat_lon_meters() {
        let mercator = GlobalMercator::default();
        let (lat, lon) = (3.2, 4.22);

        let (mx, my) = mercator.lat_lon_to_meters(lat, lon);
        let (lat_new, lon_new) = mercator.meters_to_lat_lon(mx, my);

        assert!(
            (lat - lat_new).abs() < std::f64::EPSILON * EPSILON_SCALE,
            "failed to compare: {} != {}, (lat - lat_new).abs() = {}, std::f64::EPSILON = {}",
            lat,
            lat_new,
            (lat - lat_new).abs(),
            std::f64::EPSILON * EPSILON_SCALE
        );
        assert!(
            (lon - lon_new).abs() < std::f64::EPSILON * EPSILON_SCALE,
            "failed to compare: {} != {}, (lon - lon_new).abs() = {}, std::f64::EPSILON = {}",
            lon,
            lon_new,
            (lon - lon_new).abs(),
            std::f64::EPSILON * EPSILON_SCALE
        );
    }

    #[test]
    fn test_meters_pixels() {
        let mercator = GlobalMercator::default();
        let (mx, my) = (31100.00, 42200.1);
        let zoom = 8;

        let (px, py) = mercator.meters_to_pixels(mx, my, zoom);
        let (mx_new, my_new) = mercator.pixels_to_meters(px, py, zoom);

        assert!(
            (mx - mx_new).abs() < std::f64::EPSILON * EPSILON_SCALE,
            "failed to compare: {} != {}, (mx - mx_new).abs() = {}, std::f64::EPSILON = {}",
            mx,
            mx_new,
            (mx - mx_new).abs(),
            std::f64::EPSILON * EPSILON_SCALE
        );
        assert!(
            (my - my_new).abs() < std::f64::EPSILON * EPSILON_SCALE,
            "failed to compare: {} != {}, (my - my_new).abs() = {}, std::f64::EPSILON = {}",
            my,
            my_new,
            (my - my_new).abs(),
            std::f64::EPSILON * EPSILON_SCALE
        );
    }

    #[test]
    fn test_quad_tree() {
        let mercator = GlobalMercator::default();
        let (lat, lon) = (48.6263556, 2.2492123);
        let (mx, my) = mercator.lat_lon_to_meters(lat, lon);
        let zoom = 12;
        let (tx, ty) = mercator.meters_to_tile(mx, my, zoom);
        let quadtree = mercator.quad_tree(tx, ty, zoom);
        assert_eq!(quadtree, "120220011203");
    }

    #[test]
    fn test_origin_quad_tree() {
        let mercator = GlobalMercator::default();
        let (lat, lon) = (0.0, 0.0);
        let (mx, my) = mercator.lat_lon_to_meters(lat, lon);
        let zoom = 12;
        let (tx, ty) = mercator.meters_to_tile(mx, my, zoom);
        let quadtree = mercator.quad_tree(tx, ty, zoom);
        // FIXME it may be 000000000000, and not 211111111111 (so lat -0.04/ lon -0.04)
        assert_eq!(quadtree, "211111111111");
    }

    #[test]
    fn test_zero_quad_tree() {
        let mercator = GlobalMercator::default();
        let (lat, lon) = (8.3689428, -14.3165555);
        let (mx, my) = mercator.lat_lon_to_meters(lat, lon);
        let zoom = 12;
        let (tx, ty) = mercator.meters_to_tile(mx, my, zoom);
        let quadtree = mercator.quad_tree(tx, ty, zoom);
        assert_eq!(quadtree, "033321211101");
    }

    #[test]
    fn test_high_zoom_quad_tree() {
        let mercator = GlobalMercator::default();
        let (lat, lon) = (48.6263556, 2.2492123);
        let (mx, my) = mercator.lat_lon_to_meters(lat, lon);
        let zoom = 24;
        let (tx, ty) = mercator.meters_to_tile(mx, my, zoom);
        let quadtree = mercator.quad_tree(tx, ty, zoom);
        assert_eq!(quadtree, "120220011203100323112320");
    }
}