1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#![allow(unused_macros)]

#[cfg(parking_lot)]
use parking_lot::Mutex;

#[cfg(not(parking_lot))]
use std::sync::Mutex;

/// This trait promises incrementing behaviour.
/// Implemented for standard integer types.
/// The current value is mutated, becoming the new, incremented value.
///
/// Implement this trait for the types you want to generically count on.
pub trait Inc {
    fn inc(&mut self);
}

macro_rules! imp {
($( $t:ty ) *) => {
    $(
        impl Inc for $t{
            #[inline]
            fn inc(&mut self){
                *self += 1;
            }
        }
    )*
};
}

imp![u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize];

/// A generic, gobal counter.
///
/// This counter holds up rusts guarantees of freedom of data-races. Any caveats are clearly pointed out in the documentation.
///
/// This counter is implemented using a Mutex, which can be slow if a lot of contention is involved.
/// To circumvent this, consider extracting the 'counted parts' of your struct into primitives,
/// which can then be counted by much faster primitive counters. Abstracting can then restore the original interface.
///
/// Avoid premature optimzation though!
#[derive(Debug, Default)]
pub struct Counter<T: Inc>(Mutex<T>);

/// Creates a new global, generic counter, starting from the given value.
///
/// # Example
/// ```
/// # #[macro_use] use crate::global_counter::*;
/// type CountedType = u32;
/// fn main(){
///     const start_value : u32 = 0;
///     global_counter!(COUNTER_NAME, CountedType, start_value);
///     assert_eq!(COUNTER_NAME.get_cloned(), 0);
///     COUNTER_NAME.inc();
///     assert_eq!(COUNTER_NAME.get_cloned(), 1);
/// }
/// ```
#[macro_export]
macro_rules! global_counter {
    ($name:ident, $type:ident, $value:expr) => {
        static $name: ::global_counter::global_counter_macro_dependencies::Lazy<::global_counter::generic::Counter<$type>> =
        ::global_counter::global_counter_macro_dependencies::Lazy::new(|| ::global_counter::generic::Counter::new($value));
    };
}

// A hack for local usage.
macro_rules! global_counter_2 {
    ($name:ident, $type:ident, $value:expr) => {
        use once_cell::sync::Lazy;
        static $name: Lazy<Counter<$type>> =
            Lazy::new(|| Counter::new($value));
    };
}

/// Creates a new generic, global counter, starting from its default value.
///
/// This macro will fail compilation if the given type is not `Default`.
///
/// # Example
/// ```
/// # #[macro_use] use crate::global_counter::*;
/// type CountedType = u32;
/// fn main(){
///     global_default_counter!(COUNTER_NAME, CountedType);
///     assert_eq!(COUNTER_NAME.get_cloned(), 0);
///     COUNTER_NAME.inc();
///     assert_eq!(COUNTER_NAME.get_cloned(), 1);
/// }
/// ```
#[macro_export]
macro_rules! global_default_counter {
    ($name:ident, $type:ident) => {
        global_counter!($name, $type, $type::default());
    };
}

// A hack for local usage.
macro_rules! global_default_counter_2{
    ($name:ident, $type:ident) => {
        global_counter_2!($name, $type, $type::default());
    };
}

impl<T: Inc> Counter<T> {
    /// Creates a new generic counter.
    ///
    /// This function is not const yet. As soon as [Mutex::new()](https://docs.rs/lock_api/*/lock_api/struct.Mutex.html#method.new) is stable as `const fn`, this will be as well, if the `parking_lot` feature is not disabled.
    /// Then, the exported macros will no longer be needed.
    #[inline]
    pub fn new(val: T) -> Counter<T> {
        Counter(Mutex::new(val))
    }

    /// Returns (basically) an immutable borrow of the underlying value.
    /// Best make sure this borrow goes out of scope before any other methods of the counter are being called.
    ///
    /// If `T` is not `Clone`, this is the only way to access the current value of the counter.
    ///
    /// **Warning**: Attempting to access the counter from the thread holding this borrow will result in a deadlock or panic.
    /// This is usual mutex behaviour.
    /// As long as this borrow is alive, no accesses to the counter from any thread are possible.
    ///
    /// # Good Example - Borrow goes out of scope
    /// ```
    /// # #[macro_use] use crate::global_counter::*;
    /// fn main(){
    ///     global_default_counter!(COUNTER, u8);
    ///     assert_eq!(0, *COUNTER.get_borrowed());
    ///
    ///     // The borrow is already out of scope, we can call inc safely.
    ///     COUNTER.inc();
    ///
    ///     assert_eq!(1, *COUNTER.get_borrowed());}
    /// ```
    ///
    /// # Good Example - At most one concurrent access per thread
    /// ```
    /// # #[macro_use] use crate::global_counter::*;
    /// fn main(){
    ///     global_default_counter!(COUNTER, u8);
    ///     assert_eq!(0, *COUNTER.get_borrowed());
    ///     
    ///     // Using this code, there is no danger of data races, race coditions whatsoever.
    ///     // As at each point in time, each thread either has a borrow of the counters value alive,
    ///     // or is accessing the counter using its api, never both at the same time.
    ///     let t1 = std::thread::spawn(move || {
    ///         COUNTER.inc();
    ///         let value_borrowed = COUNTER.get_borrowed();
    ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
    ///     });
    ///     let t2 = std::thread::spawn(move || {
    ///         COUNTER.inc();
    ///         let value_borrowed = COUNTER.get_borrowed();
    ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
    ///     });
    ///     let t3 = std::thread::spawn(move || {
    ///         COUNTER.inc();
    ///         let value_borrowed = COUNTER.get_borrowed();
    ///         assert!(1 <= *value_borrowed, *value_borrowed <= 3);
    ///     });
    ///
    ///     t1.join().unwrap();
    ///     t2.join().unwrap();
    ///     t3.join().unwrap();
    ///     
    ///     assert_eq!(3, *COUNTER.get_borrowed());}
    /// ```
    ///
    /// # Bad Example
    /// ```no_run
    /// # #[macro_use] use crate::global_counter::*;
    /// // We spawn a new thread. This thread will try lockig the counter twice, causing a deadlock.
    /// std::thread::spawn(move || {
    ///
    ///     // We could also use get_cloned with this counter, circumventing all these troubles.
    ///     global_default_counter!(COUNTER, u32);
    ///     
    ///     // The borrow is now alive, and this thread now holds a lock onto the counter.
    ///     let counter_value_borrowed = COUNTER.get_borrowed();
    ///     assert_eq!(0, *counter_value_borrowed);
    ///
    ///     // Now we try to lock the counter again, but we already hold a lock in the current thread! Deadlock!
    ///     COUNTER.inc();
    ///     
    ///     // Here we use `counter_value_borrowed` again, ensuring it can't be dropped "fortunately".
    ///     // This line will never actually be reached.
    ///     assert_eq!(0, *counter_value_borrowed);
    /// });
    /// ```
    #[inline]
    pub fn get_borrowed(&self) -> impl std::ops::Deref<Target = T> + '_ {
        self.lock()
    }

    /// Returns a mutable borrow of the counted value, meaning the actual value counted by this counter can be mutated through this borrow.
    ///
    /// The constraints pointed out for [get_borrowed](struct.Counter.html#method.get_borrowed) also apply here.
    ///
    /// Although this API is in theory as safe as its immutable equivalent, usage of it is discouraged, as it is highly unidiomatic.
    #[inline]
    pub fn get_mut_borrowed(&self) -> impl std::ops::DerefMut<Target = T> + '_ {
        self.lock()
    }

    /// Sets the counted value to the given value.
    #[inline]
    pub fn set(&self, val: T) {
        *self.lock() = val;
    }

    /// Increments the counter, delegating the specific implementation to the [Inc](trait.Inc.html) trait.
    #[inline]
    pub fn inc(&self) {
        self.lock().inc();
    }

    #[cfg(parking_lot)]
    #[inline]
    fn lock(&self) -> impl std::ops::DerefMut<Target = T> + '_ {
        self.0.lock()
    }

    #[cfg(not(parking_lot))]
    #[inline]
    fn lock(&self) -> impl std::ops::DerefMut<Target = T> + '_ {
        self.0.lock().expect("Global counter lock failed. This indicates another user paniced while holding a lock to the counter.")
    }
}

impl<T: Inc + Clone> Counter<T> {
    /// This avoid the troubles of [get_borrowed](struct.Counter.html#method.get_borrowed) by cloning the current value.
    ///
    /// Creating a deadlock using this API should be impossible, it might however violate implicit synchronization assumptions.
    #[inline]
    pub fn get_cloned(&self) -> T {
        self.lock().clone()
    }

    /// Increments the counter, returning the previous value, cloned.
    #[inline]
    pub fn inc_cloning(&self) -> T {
        let mut locked = self.lock();
        let prev = locked.clone();
        locked.inc();
        prev
    }
}

impl<T: Inc + Default> Counter<T> {
    /// Resets the counter to its default value.
    #[inline]
    pub fn reset(&self) {
        self.set(T::default());
    }
}

#[cfg(test)]
mod tests {
    use crate::generic::Counter;

    // TODO: Clean up this mess.
    // Maybe move all test helper structs to an extra module.

    #[derive(Default, PartialEq, Eq, Debug)]
    struct PanicOnClone(i32);

    impl Clone for PanicOnClone {
        fn clone(&self) -> Self {
            panic!("PanicOnClone cloned");
        }
    }

    impl crate::generic::Inc for PanicOnClone {
        fn inc(&mut self) {
            self.0.inc();
        }
    }

    #[test]
    fn get_borrowed_doesnt_clone() {
        global_default_counter_2!(COUNTER, PanicOnClone);
        assert_eq!(*COUNTER.get_borrowed(), PanicOnClone(0));
    }

    #[test]
    fn get_mut_borrowed_doesnt_clone() {
        global_counter_2!(COUNTER, PanicOnClone, PanicOnClone(0));
        assert_eq!(*COUNTER.get_mut_borrowed(), PanicOnClone(0));
    }

    #[test]
    fn count_to_five_single_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 1);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 2);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 3);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 4);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 5);
    }

    // TODO: Clean up this mess

    #[derive(Clone, Default, PartialEq, Eq, Debug)]
    struct Baz<T> {
        i: i32,
        u: i32,
        _marker: std::marker::PhantomData<T>,
    }

    impl<T> crate::generic::Inc for Baz<T> {
        fn inc(&mut self) {
            self.i += 1;
        }
    }

    type Bar = Baz<std::cell::RefCell<u32>>;

    #[test]
    fn count_struct() {
        global_default_counter_2!(COUNTER, Bar);
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 0,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
        COUNTER.inc();
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 1,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
        COUNTER.inc();
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 2,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
        COUNTER.inc();
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 3,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
        COUNTER.inc();
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 4,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
        COUNTER.inc();
        assert_eq!(
            COUNTER.get_cloned(),
            Baz {
                i: 5,
                u: 0,
                _marker: std::marker::PhantomData
            }
        );
    }

    #[test]
    fn count_to_50000_single_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);

        for _ in 0..50000 {
            COUNTER.inc();
        }

        assert_eq!(COUNTER.get_cloned(), 50000);
    }

    #[test]
    fn count_to_five_seq_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);

        let t_0 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        t_0.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 1);

        let t_1 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        t_1.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 2);

        let t_2 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        t_2.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 3);

        let t_3 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        t_3.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 4);

        let t_4 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        t_4.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 5);
    }

    #[test]
    fn count_to_50000_seq_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);

        let t_0 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        t_0.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 10000);

        let t_1 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        t_1.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 20000);

        let t_2 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        t_2.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 30000);

        let t_3 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        t_3.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 40000);

        let t_4 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        t_4.join().expect("Err joining thread");
        assert_eq!(COUNTER.get_cloned(), 50000);
    }

    #[test]
    fn count_to_five_par_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);

        let t_0 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        let t_1 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        let t_2 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        let t_3 = std::thread::spawn(|| {
            COUNTER.inc();
        });
        let t_4 = std::thread::spawn(|| {
            COUNTER.inc();
        });

        t_0.join().expect("Err joining thread");
        t_1.join().expect("Err joining thread");
        t_2.join().expect("Err joining thread");
        t_3.join().expect("Err joining thread");
        t_4.join().expect("Err joining thread");

        assert_eq!(COUNTER.get_cloned(), 5);
    }

    #[test]
    fn count_to_50000_par_threaded() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);

        let t_0 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        let t_1 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        let t_2 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        let t_3 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });
        let t_4 = std::thread::spawn(|| {
            for _ in 0..10000 {
                COUNTER.inc();
            }
        });

        t_0.join().expect("Err joining thread");
        t_1.join().expect("Err joining thread");
        t_2.join().expect("Err joining thread");
        t_3.join().expect("Err joining thread");
        t_4.join().expect("Err joining thread");

        assert_eq!(COUNTER.get_cloned(), 50000);
    }

    #[test]
    fn reset() {
        global_default_counter_2!(COUNTER, u32);
        assert_eq!(COUNTER.get_cloned(), 0);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 1);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 2);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 3);

        COUNTER.reset();
        assert_eq!(COUNTER.get_cloned(), 0);
        COUNTER.inc();
        assert_eq!(COUNTER.get_cloned(), 1);
    }
}