1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
use super::{Vec2, Vec3A, Vec3Mask, Vec4};
use core::{fmt, ops::*};

const ZERO: Vec3 = const_vec3!([0.0; 3]);
const ONE: Vec3 = const_vec3!([1.0; 3]);
const X_AXIS: Vec3 = const_vec3!([1.0, 0.0, 0.0]);
const Y_AXIS: Vec3 = const_vec3!([0.0, 1.0, 0.0]);
const Z_AXIS: Vec3 = const_vec3!([0.0, 0.0, 1.0]);

/// A 3-dimensional vector without SIMD support.
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug, Default)]
#[repr(C)]
pub struct Vec3(pub(crate) f32, pub(crate) f32, pub(crate) f32);

/// Creates a `Vec3`.
#[inline]
pub fn vec3(x: f32, y: f32, z: f32) -> Vec3 {
    Vec3::new(x, y, z)
}

impl Vec3 {
    /// Creates a new `Vec3`.
    #[inline]
    pub fn new(x: f32, y: f32, z: f32) -> Self {
        Self(x, y, z)
    }

    /// Creates a `Vec3` with all elements set to `0.0`.
    #[inline]
    pub const fn zero() -> Self {
        ZERO
    }

    /// Creates a `Vec3` with all elements set to `1.0`.
    #[inline]
    pub const fn one() -> Self {
        ONE
    }

    /// Creates a `Vec3` with values `[x: 1.0, y: 0.0, z: 0.0]`.
    #[inline]
    pub const fn unit_x() -> Self {
        X_AXIS
    }

    /// Creates a `Vec3` with values `[x: 0.0, y: 1.0, z: 0.0]`.
    #[inline]
    pub const fn unit_y() -> Self {
        Y_AXIS
    }

    /// Creates a `Vec3` with values `[x: 0.0, y: 0.0, z: 1.0]`.
    #[inline]
    pub const fn unit_z() -> Self {
        Z_AXIS
    }

    /// Creates a `Vec3` with all elements set to `v`.
    #[inline]
    pub fn splat(v: f32) -> Self {
        Self(v, v, v)
    }

    /// Creates a `Vec4` from `self` and the given `w` value.
    #[inline]
    pub fn extend(self, w: f32) -> Vec4 {
        Vec4::new(self.0, self.1, self.2, w)
    }

    /// Creates a `Vec2` from the first three elements of `self`,
    /// removing `z`.
    #[inline]
    pub fn truncate(self) -> Vec2 {
        Vec2::new(self.0, self.1)
    }

    /// Returns element `x`.
    #[inline]
    pub fn x(self) -> f32 {
        self.0
    }

    /// Returns element `y`.
    #[inline]
    pub fn y(self) -> f32 {
        self.1
    }

    /// Returns element `z`.
    #[inline]
    pub fn z(self) -> f32 {
        self.2
    }

    /// Returns a mutable reference to element `x`.
    #[inline]
    pub fn x_mut(&mut self) -> &mut f32 {
        &mut self.0
    }

    /// Returns a mutable reference to element `y`.
    #[inline]
    pub fn y_mut(&mut self) -> &mut f32 {
        &mut self.1
    }

    /// Returns a mutable reference to element `z`.
    #[inline]
    pub fn z_mut(&mut self) -> &mut f32 {
        &mut self.2
    }

    /// Sets element `x`.
    #[inline]
    pub fn set_x(&mut self, x: f32) {
        self.0 = x;
    }

    /// Sets element `y`.
    #[inline]
    pub fn set_y(&mut self, y: f32) {
        self.1 = y;
    }

    /// Sets element `z`.
    #[inline]
    pub fn set_z(&mut self, z: f32) {
        self.2 = z;
    }

    /// Returns a `Vec3` with all elements set to the value of element `x`.
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn dup_x(self) -> Self {
        Self(self.0, self.0, self.0)
    }

    /// Returns a `Vec3` with all elements set to the value of element `y`.
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn dup_y(self) -> Self {
        Self(self.1, self.1, self.1)
    }

    /// Returns a `Vec3` with all elements set to the value of element `z`.
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn dup_z(self) -> Self {
        Self(self.2, self.2, self.2)
    }

    /// Computes the dot product of `self` and `other`.
    #[inline]
    pub fn dot(self, other: Self) -> f32 {
        (self.0 * other.0) + (self.1 * other.1) + (self.2 * other.2)
    }

    /// Returns Vec3 dot in all lanes of Vec3
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn dot_as_vec3(self, other: Self) -> Self {
        let dot = self.dot(other);
        Vec3::new(dot, dot, dot)
    }

    /// Computes the cross product of `self` and `other`.
    #[inline]
    pub fn cross(self, other: Self) -> Self {
        Self(
            self.1 * other.2 - other.1 * self.2,
            self.2 * other.0 - other.2 * self.0,
            self.0 * other.1 - other.0 * self.1,
        )
    }

    /// Computes the length of `self`.
    #[inline]
    pub fn length(self) -> f32 {
        self.dot(self).sqrt()
    }

    /// Computes the squared length of `self`.
    ///
    /// This is generally faster than `Vec3::length()` as it avoids a square
    /// root operation.
    #[inline]
    pub fn length_squared(self) -> f32 {
        self.dot(self)
    }

    #[deprecated(since = "0.9.5", note = "please use `Vec3::length_recip` instead")]
    #[inline(always)]
    pub fn length_reciprocal(self) -> f32 {
        self.length_recip()
    }

    /// Computes `1.0 / Vec3::length()`.
    ///
    /// For valid results, `self` must _not_ be of length zero.
    #[inline]
    pub fn length_recip(self) -> f32 {
        self.length().recip()
    }

    /// Returns `self` normalized to length 1.0.
    ///
    /// For valid results, `self` must _not_ be of length zero.
    #[inline]
    pub fn normalize(self) -> Self {
        self * self.length_recip()
    }

    /// Returns the vertical minimum of `self` and `other`.
    ///
    /// In other words, this computes
    /// `[x: min(x1, x2), y: min(y1, y2), z: min(z1, z2)]`,
    /// taking the minimum of each element individually.
    #[inline]
    pub fn min(self, other: Self) -> Self {
        Self(
            self.0.min(other.0),
            self.1.min(other.1),
            self.2.min(other.2),
        )
    }

    /// Returns the vertical maximum of `self` and `other`.
    ///
    /// In other words, this computes
    /// `[x: max(x1, x2), y: max(y1, y2), z: max(z1, z2)]`,
    /// taking the maximum of each element individually.
    #[inline]
    pub fn max(self, other: Self) -> Self {
        Self(
            self.0.max(other.0),
            self.1.max(other.1),
            self.2.max(other.2),
        )
    }

    /// Returns the horizontal minimum of `self`'s elements.
    ///
    /// In other words, this computes `min(x, y, z)`.
    #[inline]
    pub fn min_element(self) -> f32 {
        self.0.min(self.1.min(self.2))
    }

    /// Returns the horizontal maximum of `self`'s elements.
    ///
    /// In other words, this computes `max(x, y, z)`.
    #[inline]
    pub fn max_element(self) -> f32 {
        self.0.max(self.1.max(self.2))
    }

    /// Performs a vertical `==` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 == x2, y1 == y2, z1 == z2]`.
    #[inline]
    pub fn cmpeq(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.eq(&other.0),
            self.1.eq(&other.1),
            self.2.eq(&other.2),
        )
    }

    /// Performs a vertical `!=` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 != x2, y1 != y2, z1 != z2]`.
    #[inline]
    pub fn cmpne(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.ne(&other.0),
            self.1.ne(&other.1),
            self.2.ne(&other.2),
        )
    }

    /// Performs a vertical `>=` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 >= x2, y1 >= y2, z1 >= z2]`.
    #[inline]
    pub fn cmpge(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.ge(&other.0),
            self.1.ge(&other.1),
            self.2.ge(&other.2),
        )
    }

    /// Performs a vertical `>` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 > x2, y1 > y2, z1 > z2]`.
    #[inline]
    pub fn cmpgt(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.gt(&other.0),
            self.1.gt(&other.1),
            self.2.gt(&other.2),
        )
    }

    /// Performs a vertical `<=` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 <= x2, y1 <= y2, z1 <= z2]`.
    #[inline]
    pub fn cmple(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.le(&other.0),
            self.1.le(&other.1),
            self.2.le(&other.2),
        )
    }

    /// Performs a vertical `<` comparison between `self` and `other`,
    /// returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x1 < x2, y1 < y2, z1 < z2]`.
    #[inline]
    pub fn cmplt(self, other: Self) -> Vec3Mask {
        Vec3Mask::new(
            self.0.lt(&other.0),
            self.1.lt(&other.1),
            self.2.lt(&other.2),
        )
    }

    /// Creates a `Vec3` from the first three values in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than three elements long.
    #[inline]
    pub fn from_slice_unaligned(slice: &[f32]) -> Self {
        Self::new(slice[0], slice[1], slice[2])
    }

    /// Writes the elements of `self` to the first three elements in `slice`.
    ///
    /// # Panics
    ///
    /// Panics if `slice` is less than three elements long.
    #[inline]
    pub fn write_to_slice_unaligned(self, slice: &mut [f32]) {
        let a = self.as_ref();
        slice[0] = a[0];
        slice[1] = a[1];
        slice[2] = a[2];
    }

    /// Per element multiplication/addition of the three inputs: b + (self * a)
    #[inline]
    #[allow(dead_code)]
    pub(crate) fn mul_add(self, a: Self, b: Self) -> Self {
        Self(
            (self.0 * a.0) + b.0,
            (self.1 * a.1) + b.1,
            (self.2 * a.2) + b.2,
        )
    }

    /// Returns a `Vec3` containing the absolute value of each element of `self`.
    #[inline]
    pub fn abs(self) -> Self {
        Self(self.0.abs(), self.1.abs(), self.2.abs())
    }

    /// Returns a `Vec3` containing the nearest integer to a number for each element of `self`.
    /// Round half-way cases away from 0.0.
    #[inline]
    pub fn round(self) -> Self {
        Self(self.0.round(), self.1.round(), self.2.round())
    }

    /// Returns a `Vec3` containing the largest integer less than or equal to a number for each
    /// element of `self`.
    #[inline]
    pub fn floor(self) -> Self {
        Self(self.0.floor(), self.1.floor(), self.2.floor())
    }

    /// Returns a `Vec3` containing the smallest integer greater than or equal to a number for each
    /// element of `self`.
    #[inline]
    pub fn ceil(self) -> Self {
        Self(self.0.ceil(), self.1.ceil(), self.2.ceil())
    }

    /// Performs `is_nan()` on each element of self, returning a `Vec3Mask` of the results.
    ///
    /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan()]`.
    #[inline]
    pub fn is_nan(self) -> Vec3Mask {
        Vec3Mask::new(self.0.is_nan(), self.1.is_nan(), self.2.is_nan())
    }

    #[deprecated(since = "0.9.5", note = "please use `Vec3::signum` instead")]
    #[inline(always)]
    pub fn sign(self) -> Self {
        self.signum()
    }

    /// Returns a `Vec3` with elements representing the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - `NAN` if the number is `NAN`
    #[inline]
    pub fn signum(self) -> Self {
        Self(self.0.signum(), self.1.signum(), self.2.signum())
    }

    #[deprecated(since = "0.9.5", note = "please use `Vec3::recip` instead")]
    #[inline(always)]
    pub fn reciprocal(self) -> Self {
        self.recip()
    }

    /// Returns a `Vec3` containing the reciprocal `1.0/n` of each element of `self`.
    #[inline]
    pub fn recip(self) -> Self {
        Self(self.0.recip(), self.1.recip(), self.2.recip())
    }

    /// Performs a linear interpolation between `self` and `other` based on
    /// the value `s`.
    ///
    /// When `s` is `0.0`, the result will be equal to `self`.  When `s`
    /// is `1.0`, the result will be equal to `other`.
    #[inline]
    pub fn lerp(self, other: Self, s: f32) -> Self {
        self + ((other - self) * s)
    }

    /// Returns whether `self` of length `1.0` or not.
    ///
    /// Uses a precision threshold of `1e-6`.
    #[inline]
    pub fn is_normalized(self) -> bool {
        is_normalized!(self)
    }

    /// Returns true if the absolute difference of all elements between `self`
    /// and `other` is less than or equal to `max_abs_diff`.
    ///
    /// This can be used to compare if two `Vec3`'s contain similar elements. It
    /// works best when comparing with a known value. The `max_abs_diff` that
    /// should be used used depends on the values being compared against.
    ///
    /// For more on floating point comparisons see
    /// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    #[inline]
    pub fn abs_diff_eq(self, other: Self, max_abs_diff: f32) -> bool {
        abs_diff_eq!(self, other, max_abs_diff)
    }

    /// Returns the angle between two vectors, in radians.
    ///
    /// The vectors do not need to be unit length, but this function does
    /// perform a `sqrt`.
    #[inline]
    pub fn angle_between(self, other: Self) -> f32 {
        crate::f32::funcs::scalar_acos(self.dot(other) / (self.dot(self) * other.dot(other)).sqrt())
    }
}

impl AsRef<[f32; 3]> for Vec3 {
    #[inline]
    fn as_ref(&self) -> &[f32; 3] {
        unsafe { &*(self as *const Vec3 as *const [f32; 3]) }
    }
}

impl AsMut<[f32; 3]> for Vec3 {
    #[inline]
    fn as_mut(&mut self) -> &mut [f32; 3] {
        unsafe { &mut *(self as *mut Vec3 as *mut [f32; 3]) }
    }
}

impl fmt::Display for Vec3 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[{}, {}, {}]", self.0, self.1, self.2)
    }
}

impl Div<Vec3> for Vec3 {
    type Output = Self;
    #[inline]
    fn div(self, other: Self) -> Self {
        Self(self.0 / other.0, self.1 / other.1, self.2 / other.2)
    }
}

impl DivAssign<Vec3> for Vec3 {
    #[inline]
    fn div_assign(&mut self, other: Self) {
        self.0 /= other.0;
        self.1 /= other.1;
        self.2 /= other.2;
    }
}

impl Div<f32> for Vec3 {
    type Output = Self;
    #[inline]
    fn div(self, other: f32) -> Self {
        Self(self.0 / other, self.1 / other, self.2 / other)
    }
}

impl DivAssign<f32> for Vec3 {
    #[inline]
    fn div_assign(&mut self, other: f32) {
        self.0 /= other;
        self.1 /= other;
        self.2 /= other;
    }
}

impl Div<Vec3> for f32 {
    type Output = Vec3;
    #[inline]
    fn div(self, other: Vec3) -> Vec3 {
        Vec3(self / other.0, self / other.1, self / other.2)
    }
}

impl Mul<Vec3> for Vec3 {
    type Output = Self;
    #[inline]
    fn mul(self, other: Self) -> Self {
        Self(self.0 * other.0, self.1 * other.1, self.2 * other.2)
    }
}

impl MulAssign<Vec3> for Vec3 {
    #[inline]
    fn mul_assign(&mut self, other: Self) {
        self.0 *= other.0;
        self.1 *= other.1;
        self.2 *= other.2;
    }
}

impl Mul<f32> for Vec3 {
    type Output = Self;
    #[inline]
    fn mul(self, other: f32) -> Self {
        Self(self.0 * other, self.1 * other, self.2 * other)
    }
}

impl MulAssign<f32> for Vec3 {
    #[inline]
    fn mul_assign(&mut self, other: f32) {
        self.0 *= other;
        self.1 *= other;
        self.2 *= other;
    }
}

impl Mul<Vec3> for f32 {
    type Output = Vec3;
    #[inline]
    fn mul(self, other: Vec3) -> Vec3 {
        Vec3(self * other.0, self * other.1, self * other.2)
    }
}

impl Add for Vec3 {
    type Output = Self;
    #[inline]
    fn add(self, other: Self) -> Self {
        Self(self.0 + other.0, self.1 + other.1, self.2 + other.2)
    }
}

impl AddAssign for Vec3 {
    #[inline]
    fn add_assign(&mut self, other: Self) {
        self.0 += other.0;
        self.1 += other.1;
        self.2 += other.2;
    }
}

impl Sub for Vec3 {
    type Output = Self;
    #[inline]
    fn sub(self, other: Self) -> Self {
        Self(self.0 - other.0, self.1 - other.1, self.2 - other.2)
    }
}

impl SubAssign for Vec3 {
    #[inline]
    fn sub_assign(&mut self, other: Self) {
        self.0 -= other.0;
        self.1 -= other.1;
        self.2 -= other.2;
    }
}

impl Neg for Vec3 {
    type Output = Self;
    #[inline]
    fn neg(self) -> Self {
        Self(-self.0, -self.1, -self.2)
    }
}

impl Index<usize> for Vec3 {
    type Output = f32;
    #[inline]
    fn index(&self, index: usize) -> &Self::Output {
        &self.as_ref()[index]
    }
}

impl IndexMut<usize> for Vec3 {
    #[inline]
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.as_mut()[index]
    }
}

impl From<(f32, f32, f32)> for Vec3 {
    #[inline]
    fn from(t: (f32, f32, f32)) -> Self {
        Self::new(t.0, t.1, t.2)
    }
}

impl From<Vec3> for (f32, f32, f32) {
    #[inline]
    fn from(v: Vec3) -> Self {
        (v.0, v.1, v.2)
    }
}

impl From<[f32; 3]> for Vec3 {
    #[inline]
    fn from(a: [f32; 3]) -> Self {
        Self::new(a[0], a[1], a[2])
    }
}

impl From<Vec3> for [f32; 3] {
    #[inline]
    fn from(v: Vec3) -> Self {
        [v.0, v.1, v.2]
    }
}

impl From<Vec3A> for Vec3 {
    #[inline]
    fn from(v: Vec3A) -> Self {
        #[cfg(vec3a_sse2)]
        {
            let (x, y, z) = v.into();
            Self(x, y, z)
        }

        #[cfg(vec3a_f32)]
        {
            v.0
        }
    }
}

#[test]
fn test_vec3_private() {
    assert_eq!(
        vec3(1.0, 1.0, 1.0).mul_add(vec3(0.5, 2.0, -4.0), vec3(-1.0, -1.0, -1.0)),
        vec3(-0.5, 1.0, -5.0)
    );
    assert_eq!(vec3(1.0, 2.0, 3.0).dup_x(), vec3(1.0, 1.0, 1.0));
    assert_eq!(vec3(1.0, 2.0, 3.0).dup_y(), vec3(2.0, 2.0, 2.0));
    assert_eq!(vec3(1.0, 2.0, 3.0).dup_z(), vec3(3.0, 3.0, 3.0));
}